WORMS AND BOTS

CS155 Elie Bursztein

OUTLINE

• Worm Generation 1

- Botnet
- Fast Flux
- Worm Generation 2
- Underground Economy

WORMS GENERATION 1

WORM

A worm is self-replicating software designed to spread through the network

- Typically, exploit security flaws in widely used services
- Can cause enormous damage
 - Launch DDOS attacks, install bot networks
 - Access sensitive information
 - Cause confusion by corrupting the sensitive information

COST OF WORM ATTACKS

Morris worm, 1988

- Infected approximately 6,000 machines
 - 10% of computers connected to the Internet
- cost ~ \$10 million in downtime and cleanup
- Code Red worm, July 16 2001
 - Direct descendant of Morris' worm
 - Infected more than 500,000 servers
 - Programmed to go into infinite sleep mode July 28
 - Caused ~ \$2.6 Billion in damages,
- Love Bug worm: \$8.75 billion

Statistics: Computer Economics Inc., Carlsbad, California

INTERNET WORM (FIRST MAJOR ATTACK)

Released November 1988

- Program spread through Digital, Sun workstations
- Exploited Unix security vulnerabilities
 - VAX computers and SUN-3 workstations running versions 4.2 and 4.3 Berkeley UNIX code
- Consequences
 - No immediate damage from program itself
 - Replication and threat of damage
 - Load on network, systems used in attack
 - Many systems shut down to prevent further attack

SOME HISTORICAL WORMS OF NOTE

Worm	Date	Distinction
Morris	11/88	Used multiple vulnerabilities, propagate to "nearby" sys
ADM	5/98	Random scanning of IP address space
Ramen	1/01	Exploited three vulnerabilities
Lion	3/01	Stealthy, rootkit worm
Cheese	6/01	Vigilante worm that secured vulnerable systems
Code Red	7/01	First sig Windows worm; Completely memory resident
Walk	8/01	Recompiled source code locally
Nimda	9/01	Windows worm: client-to-server, c-to-c, s-to-s,
Scalper	6/02	11 days after announcement of vulnerability; peer-to-peer network of compromised systems
Slammer	1/03	Used a single UDP packet for explosive growth

INCREASING PROPAGATION SPEED

Code Red, July 2001

- Affects Microsoft Index Server 2.0,
 - Windows 2000 Indexing service on Windows NT 4.0.
 - Windows 2000 that run IIS 4.0 and 5.0 Web servers
- Exploits known buffer overflow in Idq.dll
- Vulnerable population (360,000 servers) infected in 14 hours
- SQL Slammer, January 2003
 - Affects in Microsoft SQL 2000
 - Exploits known buffer overflow vulnerability
 - Server Resolution service vulnerability reported June 2002
 - Patched released in July 2002 Bulletin MS02-39
 - Vulnerable population infected in less than 10 minutes

CODE RED

Initial version released July 13, 2001

- Sends its code as an HTTP request
- HTTP request exploits buffer overflow
- Malicious code is not stored in a file
 - Placed in memory and then run
- When executed,
 - Worm checks for the file C:\Notworm
 - If file exists, the worm thread goes into infinite sleep state
 - Creates new threads
 - If the date is before the 20th of the month, the next 99 threads attempt to exploit more computers by targeting random IP addresses

Code Red of July 13 and July 19

Initial release of July 13

- 1st through 20th month: Spread
 - via random scan of 32-bit IP addr space
- 20th through end of each month: attack.
 - Flooding attack against 198.137.240.91 (www.whitehouse.gov)
- Failure to seed random number generator ⇒ *linear growth*

Revision released July 19, 2001.

White House responds to threat of flooding attack by <u>changing</u> <u>the address</u> of <u>www.whitehouse.gov</u>

des: Vern

- Causes Code Red to <u>die</u> for date ≥ 20th of the month.
- But: this time random number generator correctly seeded

Infection rate

MEASURING ACTIVITY: NETWORK TELESCOPE

Monitor cross-section of Internet address space, measure traffic

- "Backscatter" from DOS floods
- Attackers probing blindly
- Random scanning from worms
- LBNL's cross-section: 1/32,768 of Internet
- UCSD, UWisc's cross-section:14/256.

Spread of Code Red

- Network telescopes estimate of # infected hosts: 360K. (Beware DHCP & NAT)
- Course of infection fits classic logistic.
- Note: larger the vulnerable population, faster the worm spreads.

• That night (\Rightarrow 20th), worm dies ...

... except for hosts with inaccurate clocks!

 It just takes one of these to restart the worm on August 1st ...
 Slides: Vern

Paxson

Code Red 2

Released August 4, 2001.

Comment in code: "Code Red 2."

But in fact completely different code base.

Payload: a root backdoor, resilient to reboots.

Bug: crashes NT, only works on Windows 2000.

Localized scanning: prefers nearby addresses.

♦ Kills Code Red 1.

Safety value: programmed to die Oct 1, 2001.
Slides: Vern

Paxson

STRIVING FOR GREATER VIRULENCE: NIMDA

Released September 18, 2001.

- Multi-mode spreading:
 - attack IIS servers via infected clients
 - email itself to address book as a virus
 - copy itself across open network shares
 - modifying Web pages on infected servers w/ client exploit
 - scanning for Code Red II backdoors (!)
- worms form an ecosystem!
- Leaped across firewalls.

Slides: Vern Paxson

HOW DO WORMS PROPAGATE?

- Scanning worms : Worm chooses "random" address
- Coordinated scanning : Different worm instances scan different addresses

Flash worms

- Assemble tree of vulnerable hosts in advance, propagate along tree
 - Not observed in the wild, yet
 - Potential for 106 hosts in < 2 sec ! [Staniford]

Meta-server worm :Ask server for hosts to infect (e.g., Google for "powered by phpbb")

Topological worm: Use information from infected hosts (web server logs, email address books, config files, SSH "known hosts")

Contagion worm : Propagate parasitically along with normally initiated communication

SLAMMER

- 01/25/2003
- Vulnerability disclosed : 25 june 2002
- Better scanning algorithm
- UDP Single packet : 380bytes

SLAMMER PROPAGATION

NUMBER OF SCAN/SEC

PACKET LOSS

A SERVER VIEW

CONSEQUENCES

- ATM systems not available
- Phone network overloaded (no 911!)
- 5 DNS root down
- Planes delayed

Worm Detection and Defense

- <u>Detect</u> via honeyfarms: collections of "honeypots" fed by a network telescope.
 - Any outbound connection from honeyfarm = worm.

(at least, that's the theory)

- Distill signature from inbound/outbound traffic.
- If telescope covers N addresses, expect detection when worm has infected 1/N of population.

 <u>Thwart</u> via scan suppressors: network elements that block traffic from hosts that make failed connection attempts to too many other hosts

- 5 minutes to several weeks to write a signature
- Several hours or more for testing

NEED FOR AUTOMATION

Current threats can spread faster than defenses can reaction
Manual capture/analyze/signature/rollout model too slow

Slide: Carey Nachenberg, Symantec

SIGNATURE INFERENCE

Challenge

need to automatically learn a content "signature" for each new worm – potentially in less than a second!

Some proposed solutions

- Singh et al, Automated Worm Fingerprinting, OSDI '04
- Kim et al, Autograph: Toward Automated, Distributed Worm Signature Detection, USENIX Sec '04

SIGNATURE INFERENCE

Monitor network and look for strings common to traffic with worm-like behavior

Signatures can then be used for content filtering

PACKE SRC:	TH	EA	DE	२ 14.3	392() D:	ST:	132	2.23	39.3	13.2	24.	500/) PI	ROT	T	P					
PACKE	ET P	AY	LO/	AD (CO	NT	ENT)								7						
00F0	90	90	90-		211											1						
0100	90	90	9		KII	2VI	л.R	SI	gn	at	ure	e ca	apt	tur	ea	Dy	/				.M?	. w
0110	90	90	9		F	arl	vhi	ird	or	ηN	/ลง	1	⊿ th	2	00	4			cd.			
0120	90	90	90	30-	<u> </u>	<u>.</u>	yDI	ГG	~	50	<u>''</u>	<u> </u>	50	, 	90			<u> </u>				
0130	90	90	90	90	90	90	90	90	EB	10	5A	4A	33	C9	66	B9				2	JJ3.	f.
0140	66	01	80	34	AO	99	E2	FA	EB	05	E8	EB	FF	FF	FF	70	£	4.				σ.
																						-

CONTENT SIFTING

- Assume there exists some (relatively) unique invariant bitstring W across all instances of a particular worm (true today, not tomorrow...)
- Two consequences
 - Content Prevalence: W will be more common in traffic than other bitstrings of the same length
 - Address Dispersion: the set of packets containing W will address a disproportionate number of distinct sources and destinations
- Content sifting: find W's with high content prevalence and high address dispersion and drop that traffic

OBSERVATION: HIGH-PREVALENCE STRINGS ARE RARE

Only 0.6% of the 40 byte substrings repeat more than 3 times in a minute

(Stefan Savage, UCSD *)

THE BASIC ALGORITHM

(Stefan Savage, UCSD *)

(Stefan Savage, UCSD *)

PROJECT 2
PROJECT STATUS

- 30% of submission came in before 4pm
- Some submission are late

BACKGROUND

- Network security is about packets manipulation
 - DDOS
 - Firewall / NAT
 - Man in the middle
 - Network Scouting

PROJECT GOAL

- Crafting packet
- Understand sniffing
- Understand Firewall and routing
- Understand Network debugging

OUTLINE

• Worm Generation 1

- Botnet
- Fast Flux
- Worm Generation 2
- Underground Economy

WHAT IS A BOTNET ?

CENTRALIZED BOTNET

C&C CENTRALIZED **STAT**

WORLD WILD PROBLEM

TYPE OF BOTNET

Distributed

EXAMPLE STORM

- Also known as W32/Peacomm Trojan
- Use P2P communication : kademlia
- Command are stored into the DHT table

HISTORY

- Started in January 2007
- First email title : 230 dead as storm batters Europe

KEY FEATURE

- Smart social engineering
- Use client side vulnerabilities
- Hijack chat session to lure user
- Obfuscated C&C
- Actively updated
- Use Spam templates

SMART SPAM

- Venezuelan leader: "Let's the War beginning".
- U.S. Southwest braces for another winter blast. More then 1000 people are dead.
- The commander of a U.S. nuclear submarine lunch the rocket by mistake.
- The Supreme Court has been attacked by terrorists. Sen. Mark Dayton dead!
- Third World War just have started!
- U.S. Secretary of State Condoleezza Rice has kicked German Chancellor Angela Merkel

MORE RECENTLY

- Valentine day
- Obama victory
- 1 april

COMPOSITION

- game0.exe Backdoor/downloader
- game1.exe SMTP relay
- game2.exe E-mail address stealer
- game3.exe E-mail virus spreader
- game4.exe Distributed denial of service (DDos) attack tool
- game5.exe Updated copy of Storm

128 bit md4=<ip><port><2 bytes flag>

🚮 Lister - [c:\WINDOWS\msvupdater.config]

 Elle
 Edit
 Options
 Help

 [config]
 ID=527396304
 [local]

 uport=21003
 [peers]
 00000F2DEA50123D5F37587A4011BE0C=7BC66EDC45AD00
 0100997A376D3F0930202E06F04FE74A=7AA441891B6A00

 0200F2DEA50123D5F37587A4011BE0C=7BC66EDC45AD00
 0100997A376D3F0930202E06F04FE74A=7AA441891B6A00
 0200FF2EAE2AE60AE04EBF79AE666C21=592230173FD200

 0300034E764D6A2CD9701C544F5BAE2A=7D19F271161800
 0400DA65EE6F9338F61C0D1C7824D41A=8D9815A0306800
 0500D466CB1B777F6C24927E452A2C79=BE26F009623700

 06002655186BD25F5F013A7311598778=7AA2A0AC3FA700
 0700A45D7F004A0B0913DD3CDC0F5A2A=76ACC9E51C8E00
 0500D466C951C8E00

RDV POINT

- Compute a secret Key value
 - Use a random generator
 - A secret seed
 - The time

OVERVIEW OF THE LOGIG

OVERNET PROTOCOL

OVERNET PROTOCOL

HANDLER

A Multi-perspective Analysis of the Storm (Peacomm) Worm Phillip Porras and Hassen Sa["]idi and Vinod Yegneswaran

HOW STORM WORK

- Connect to Overnet
- Download Secondary Injection URL (hard coded key)
- Decrypt Secondary Injection URL
- Download Secondary Injection
- Execute Secondary Injection

WEAKNESS

- Initial peer list
- sybil attack
- Index poisoning

NETWORK VIEW

Command and control structures in malware: From Handler/Agent to P2P, by Dave Dittrich and Sven Dietrich, USENIX ;login: vol. 32, no. 6, December 2007, pp. 8-17

COMPARISON

		Communication system		Security	
	Design complexity	Channel type	Message latency	Detectability	Resilience
Centralized	Low	Bidirecti onnal	Low	High	Low
Distributed	High	Unidirecti onnal	High	Low	High

FAST FLUX

OUTLINE

- Worm Generation 1
- Botnet
- Fast Flux
- Worm Generation 2
- Underground Economy

GOAL

- Resilient service hosting
- Prevent tracing

RECEIPT

- One domain
- Round robin DNS capability
- Thousand of IP (bots)
- Short TTL

NORMAL HOSTING

SINGLE FAST FLUX

normal hosting

Simple flux

DOUBLE FAST FLUX

Simple flux

REAL WORLD FAST FLUX

;; WHEN: Wed Apr 4 18:47:50 2007

login.mylspacee.com. 177 IN A 66.229.133.xxx [c-66-229-133-xxx.hsd1.fl.comcast.net] login.mylspacee.com. 177 IN A 67.10.117.xxx [cpe-67-10-117-xxx.gt.res.rr.com] login.mylspacee.com. 177 IN A 70.244.2.xxx [adsl-70-244-2-xxx.dsl.hrlntx.swbell.net] login.mylspacee.com. 177 IN A 74.67.113.xxx [cpe-74-67-113-xxx.stny.res.rr.com] login.mylspacee.com. 177 IN A 74.137.49.xxx [74-137-49-xxx.dhcp.insightbb.com]

mylspacee.com. 108877 IN NS ns3.myheroisyourslove.hk. mylspacee.com. 108877 IN NS ns4.myheroisyourslove.hk. mylspacee.com. 108877 IN NS ns5.myheroisyourslove.hk. mylspacee.com. 108877 IN NS ns1.myheroisyourslove.hk. mylspacee.com. 108877 IN NS ns2.myheroisyourslove.hk.

ns1.myheroisyourslove.hk.854 IN A 70.227.218.xxx [ppp-70-227-218-xxx.dsl.sfldmi.ameritech.net] ns2.myheroisyourslove.hk.854 IN A 70.136.16.xxx [adsl-70-136-16-xxx.dsl.bumttx.sbcglobal.net] ns3.myheroisyourslove.hk. 854 IN A 68.59.76.xxx [c-68-59-76-xxx.hsd1.al.comcast.net]
WEB ROTATION ~4 MN LATER

;; WHEN: Wed Apr 4 18:51:56 2007 (~4 minutes/186 seconds later)
login.mylspacee.com. 161 IN A 74.131.218.xxx [74-131-218-xxx.dhcp.insightbb.com] NEW
login.mylspacee.com. 161 IN A 24.174.195.xxx [cpe-24-174-195-xxx.elp.res.rr.com] NEW
login.mylspacee.com. 161 IN A 65.65.182.xxx [adsl-65-65-182-xxx.dsl.hstntx.swbell.net] NEW
login.mylspacee.com. 161 IN A 69.215.174.xxx [ppp-69-215-174-xxx.dsl.ipltin.ameritech.net] NEW
login.mylspacee.com. 161 IN A 71.135.180.xxx [adsl-71-135-180-xxx.dsl.pltn13.pacbell.net] NEW

mylspacee.com. 108642 IN NS ns3.myheroisyourslove.hk. mylspacee.com. 108642 IN NS ns4.myheroisyourslove.hk. mylspacee.com. 108642 IN NS ns5.myheroisyourslove.hk. mylspacee.com. 108642 IN NS ns1.myheroisyourslove.hk. mylspacee.com. 108642 IN NS ns2.myheroisyourslove.hk.

ns1.myheroisyourslove.hk. 608 IN A 70.227.218.xxx [ppp-70-227-218-xxx.dsl.sfldmi.ameritech.net] ns2.myheroisyourslove.hk. 608 IN A 70.136.16.xxx [adsl-70-136-16-xxx.dsl.bumttx.sbcglobal.net] ns3.myheroisyourslove.hk. 608 IN A 68.59.76.xxx [c-68-59-76-xxx.hsd1.al.comcast.net]

NS ROTATION ~90MN LATER

- ;; WHEN: Wed Apr 4 21:13:14 2007 (~90 minutes/4878 seconds later)
- ns1.myheroisyourslove.hk. 3596 IN A 75.67.15.xxx [c-75-67-15xxx.hsd1.ma.comcast.net] NEW
- ns2.myheroisyourslove.hk. 3596 IN A 75.22.239.xxx [adsl-75-22-239-xxx.dsl.chcgil.sbcglobal.net] NEW
- ns3.myheroisyourslove.hk. 3596 IN A 75.33.248.xxx [adsl-75-33-248-xxx.dsl.chcgil.sbcglobal.net] NEW
- ns4.myheroisyourslove.hk. 180 IN A 69.238.210.xxx [ppp-69-238-210-xxx.dsl.irvnca.pacbell.net] NEW
- ns5.myheroisyourslove.hk. 3596 IN A 70.64.222.xxx [xxx.mj.shawcable.net] NEW

DETECTION / MITIGATION

- Fast Flux are very "noisy"
 - Many A name
 - Quick rotation
 - Many NS
 - Quick rotation

WORMS GENERATION 2

OUTLINE

- Worm Generation 1
- Botnet
- Fast Flux
- Worm Generation 2
- Underground Economy

CONFICKER 2008-2009

- Most important Worm since Slammer
- 4 years have passed..
- Vulnerability in Server Service
- 2000, XP, Vista, 2003, and 2008

WINDOWS OF VULNERABILITY

- Found in the wild
- Announced by MS 22 Oct 2008
- Out of band patch 26 Oct 2008
- Public Exploit 26 Oct 2008
- Conficker : Early november

TECH DETAILS

- Buffer overflow in the RPC code
- Port 139 / 445
- Neeris did adopt it as well (Apr 09)
- First version dev by chinese hackers (37\$)

TECH DETAILS 2

- Use a non standard overflow
- Use a fixed shellcode
- Re-infection is used to update binary
- Blacklist Ukrainian ISP / Language
- Use named mutex for version conflict
- Use HTTP request to popular domains for time sync (A / B)

PORT ACTIVITY

sans.org

NUMBERS

- Total IP Addresses: 10,512,451
- Total Conficker A IPs: 4,743,658
- Total Conficker B IPs: 6,767,602
- Total Conficker AB IPs: 1,022,062

CONFICKER A 2008-11-21

- Infection : Netbios MS08-067
- propagation HTTP pull / 250 rand / 8 TLD
- **Defense** : N/A
- End usage : update to version B,C or D

CONFICKER B 2008-12-29

- Infection :
 - Netbios MS08-067
 - Removable Media via DLL
- propagation
 - HTTP pull / 250 rand / 8 TLD
 - Netbios Push : patch for reinjection
- Defense :
 - Blocks DNS lookups
 - Disables AutoUpdate
- End usage : update to version C or D

DIFFERENCE BETWEEN B/C

- Designed to counter counter-measure
- 15% of the original B code base untouched
- New thread architecture
- P2P addition

CONFICKER C 2009-03-04

• Infection :

- Netbios MS08-067
- Removable Media via DLL
- Dictionary attack on \$Admin
- propagation
 - HTTP pull / 250 rand / 8 TLD
 - Netbios Push : patch for reinjection
 - Create named pipe
- Defense :
 - Blocks DNS lookups
 - Disables AutoUpdate

CONFICKER D 2009-03-04

- propagation
 - HTTP pull / 50 000 rand / 110 TLD
 - P2P push / pull custom protocol
- Defense :
 - Disables Safe Mode
 - Kills anti-malware
 - in-memory patch of DNSAPI.DLL to block lookups of anti-malware related web sites
- End usage : update to version E

CONFICKER E 2009-07-04

- Downloads and installs additional malware:
 - Waledac spambot
 - SpyProtect 2009 scareware
- Removes self on 3 May 2009 (Does not remove accompanying copy of W32.Downadup.C) [37]

BINARY SECURITY

CONFICKER A/B LOGIC

SRI

RENDEZ VOUS POINT

WHAT DOES IT TAKE TO BUILD SUCH CODE

- Internet-wide programming skill
- advanced cryptographic skill
- custom dual-layer code packing
- code obfuscation skills
- in-depth knowledge of Windows internals and security products.

Underground Economy

OUTLINE

- Worm Generation 1
- Botnet
- Fast Flux
 - Worm Generation 2
- Underground Economy

ILLICIT ACTIVITIES

- D-DOS
- Extortion
- Identity theft
- Warez hosting
- Spam
- Phising
- Click fraud
- malware distribution

LONG TAIL APPLICATION

Black Market Botnets Nathan Friess and John Aycock

STORM ARCHITECTURE

Spamalytics: An Empirical Analysis of Spam Marketing Conversion Chris Kanich, Christian Kreibicht Kirill Levchenko, Brandon Enright, Geoffrey M. Voelker, Vern Paxsont Stefan Savage,

SPAM CRAFT

SPAM STAT

Spamalytics: An Empirical Analysis of Spam Marketing Conversion Chris Kanich- Christian Kreibich+ Kirill Levchenko- Brandon Enright- Geoffrey M. Voelker- Vern Paxson+ Stefan Savage-

CAMPAIGN	DATES	WORKERS	E-MAILS
Pharmacy	Mar 21 – Apr 15	31,348	347,590,389
Postcard	Mar 9 – Mar 15	17,639	83,665,479
April Fool	Mar 31 – Apr 2	3,678	38,651,124
		Total	469,906,992

Spamalytics: An Empirical Analysis of Spam Marketing Conversion Chris Kanich- Christian Kreibich+ Kirill Levchenko- Brandon Enright- Geoffrey M. Voelker- Vern Paxson+ Stefan Savage-

Mar 24 Mar 29 Apr 02 Apr 06 Apr 10 Apr 14 Time DOMAIN REPARTION

DOMAIN	Freq.		
hotmail.com	8.47%		
yahoo.com	5.05%		
gmail.com	3.17%		
aol.com	2.37%		
yahoo.co.in	1.13%		
sbcglobal.net	0.93%		
mail.ru	0.86%		
shaw.ca	0.61%		
wanadoo.fr	0.61%		
msn.com	0.58%		
Total	23.79%		

Spamalytics: An Empirical Analysis of Spam Marketing Conversion Chris Kanich- Christian Kreibicht Kirill Levchenko- Brandon Enright- Geoffrey M. Voelker- Vern Paxsont Stefan Savage-

SPAM PIPELINE

Spamalytics: An Empirical Analysis of Spam Marketing Conversion Chris Kanich, Christian Kreibicht Kirill Levchenko, Brandon Enright, Geoffrey M. Voelker, Vern Paxsont Stefan Savage.

P :RCEN 'AGE

email not delivered

targete

address

blocked by spam filter

ignored by user user left site

STAGE	PHARMACY		Postcard		April Fool	
A – Spam Targets B – MTA Delivery (est.)	347,590,389 82,700,000	100% 23.8%	83,655,479 21,100,000	100% 25.2%	40,135,487	100% 25.2%
C – Inbox Delivery						
D – User Site Visits	10,522	0.00303%	3,827	0.00457%	2,721	0.00680%
E – User Conversions	28	0.0000081%	316	0.000378%	225	0.000561%

Spamalytics: An Empirical Analysis of Spam Marketing Conversion Chris Kanich- Christian Kreibicht Kirill Levchenko- Brandon Enright- Geoffrey M. Voelker- Vern Paxsont Stefan Savage-

CLICK RESPONSE TIME

Spamalytics: An Empirical Analysis of Spam Marketing Conversion Chris Kanich, Christian Kreibicht Kirill Levchenko, Brandon Enright, Geoffrey M. Voelker, Vern Paxsont Stefan Savage,

GEOGRAPHIC REPARTITION

Savage.

Spamalytics: An Empirical Analysis of Spam Marketing Conversion Chris Kanich- Christian Kreibicht Kirill Levchenko- Brandon Enright- Geoffrey M. Voelker- Vern Paxsont Stefan