

Tim Newsham and Alex Stamos

Stanford CS155

April 6, 2010

Bug Finding Techniques

2

Your Humble Narrators

 Tim Newsham

 Security Researcher

 ISS, SNI, NAI, Guardent, @stake, iSEC

 U of Hawaii BSEE, U of Arizona MSCS

 Alex Stamos

 Co-Founder and Partner

 LBNL, Loudcloud, @stake

 UC Berkeley BS EECS

3

Agenda

 Why are you finding bugs?

 Overview of common techniques

 Fuzzing

 Debugging and Process Stalking

 Reverse Engineering

 Demo

 Discussion

4

Why are you finding bugs?

Black Hat

 Researcher Security Engineer

Disassembly

Fuzzing

Source Review

Stolen Source
Review

Static Analysis Debugging

5

Bertha the Black Hat of Ill Repute

 Goal

 Dependable Exploitation

 Stealthy

 Thoroughness

 Usually only need one bug

 No need to document
coverage

 Access

 Often no source

6

Marvin the Megalomaniacal Researcher

 Goal
 Column inches from press, props

from friends

 Preferably in a trendy platform

 Make money from ZDI/Pwn2Own

 Thoroughness
 Don’t need to be perfect, don’t want

to be embarrassed

 Access
 Casual access to engineers

 Source == Lawyers

7

Sally the Stressed Security Engineer

 Goal

 Find as many flaws as possible

 Reduce incidence of exploitation*

 Thoroughness

 Must have coverage metrics

 Should at least find low-hanging fruit

 Access

 Source code, debug symbols, engineers

 Money for tools and staff

8

The Difficulty of Defense

So, oft in theologic wars
 The disputants, I ween,
Rail on in utter ignorance
 Of what each other mean,
And prate about an Elephant
Not one of them has seen!

9

The Difficulty of Defense

 Asymmetric Warfare

 Defenders always have to be perfect

 Attackers can be good and lucky

 Knowing this, is bug finding an efficient defense
strategy?

10

Limitations of Today’s Lecture

 The most important flaws we find are NOT
implementation flaws

 Common problems:

 Trusting untrusted components

 Poor use of cryptography

 Overreliance on DRM

 Forgotten or cut security features

11

Black Box Bug Finding

 Basic goal is to exercise all states of software while
watching for a response that indicates vulnerability

Exercise

• Manual manipulation

• Fuzzing

• Process hooking

Watch for response

• Process stalking

• Debugging

• Emulation

Determine
exploitability

• Disassembly

• Debugging

12

Fuzzing

13

“Smarter Fuzzing”

 Record or implement path through gating functions

 Utilize knowledge of protocol or file format

 Use process hooking

14

Debugging

15

Reverse Engineering

 Decompilation
 Often used for semi-compiled code

 .Net CLR

 Java

 Flash

 Can work with C++ w/ symbols

 Disassembly
 1:1 matching with machine code

 Modern disassemblers allow for highly automated analysis
process

 Protocol Reverse Engineering

16

Disassembly - IDA Pro

17

Reversing Patches - BinDiff

18

Defeating Black Box Bug Analysis

 Many programs include anti-debug functionality

 Check PDB

 System calls, monitor process space

 Throw INTs, test for catch

 Timing tests

 Anti-Reversing

 Dynamic Unpacking

 Pointer Arithmetic

 Encrypted and obfuscated function calls

19

Anti-Anti-Debug - Snitch

20

Snitch Output on WMP
Potential break-point debugger check at 0x4bf9f889 (blackbox.dll)

 Exception handler 1 is at 0x4bf9fe71 (blackbox.dll)

 Exception handler 2 is at 0x7c839ac0 (kernel32.dll)

Potential break-point debugger check at 0x4bf9f9fc (blackbox.dll)

 Exception handler 1 is at 0x4bf9fe71 (blackbox.dll)

 Exception handler 2 is at 0x7c839ac0 (kernel32.dll)

Potential break-point debugger check at 0x4bf9f889 (blackbox.dll)

 Exception handler 1 is at 0x4bf9fe71 (blackbox.dll)

 Exception handler 2 is at 0x7c839ac0 (kernel32.dll)

Potential break-point debugger check at 0x4bf9f889 (blackbox.dll)

 Exception handler 1 is at 0x4bf9fe71 (blackbox.dll)

 Exception handler 2 is at 0x7c839ac0 (kernel32.dll)

Potential break-point debugger check at 0x4bf9f889 (blackbox.dll)

 Exception handler 1 is at 0x4bf9fe71 (blackbox.dll)

 Exception handler 2 is at 0x7c839ac0 (kernel32.dll)

Potential OutputDebugString debugger check at 0x7c812aeb

 Module: \Device\HarddiskVolume1\WINDOWS\system32\kernel32.dll

Potential break-point debugger check at 0x4df75f36 (drmv2clt.dll)

 Exception handler 1 is at 0x4dfda68e (drmv2clt.dll)

 Exception handler 2 is at 0x7c839ac0 (kernel32.dll)

21

White Box Bug Finding

 Black Box techniques always work better with more context
 More quickly triage flaws

 Patch flaws much faster

 Analysis can start with source code
 Look at sensitive areas

 Use lexical analysis to give pointers
 Flawfinder

 RATS

 Use semantic analysis
 Coverity

 Fortify

 Most White Box techniques also increase false positive count

22

Hard to Find Bugs

 MS10-002 – Remote Code Execution in IE 5-8

function window :: onload ()

{

 var SourceElement = document.createElement ("div");

 document.body.appendChild (SourceElement);

 var SavedEvent = null;

 SourceElement.onclick = function () {

 SavedEvent = document.createEventObject (event);

 document.body.removeChild (event.srcElement);

 }

 SourceElement.fireEvent ("onclick");

 SourceElement = SavedEvent.srcElement;

}

23

Hard to Find Bugs

 How does this become a reliable exploit?
 Heap spraying allows for predictable control of memory space

 IE Small Block Manager Reuses Pages

 Asynchronous Garbage Collection can be synchronized by
attacker: CollectGarbage()

 How about on more modern OSes?
 ASLR and DEP defeated with Flash JIT

 Return Oriented Programming
http://cseweb.ucsd.edu/~hovav/talks/blackhat08.html

 Good analyses of Aurora Exploit:
http://www.geoffchappell.com/viewer.htm?doc=notes/security/aurora/index.htm

 http://www.hbgary.com/wp-content/themes/blackhat/images/hbgthreatreport_aurora.pdf

http://cseweb.ucsd.edu/~hovav/talks/blackhat08.html
http://cseweb.ucsd.edu/~hovav/talks/blackhat08.html
http://www.geoffchappell.com/viewer.htm?doc=notes/security/aurora/index.htm
http://www.geoffchappell.com/viewer.htm?doc=notes/security/aurora/index.htm
http://www.hbgary.com/wp-content/themes/blackhat/images/hbgthreatreport_aurora.pdf
http://www.hbgary.com/wp-content/themes/blackhat/images/hbgthreatreport_aurora.pdf
http://www.hbgary.com/wp-content/themes/blackhat/images/hbgthreatreport_aurora.pdf
http://www.hbgary.com/wp-content/themes/blackhat/images/hbgthreatreport_aurora.pdf

24

Future of Bug Finding

 How could you find this bug?

 Requires understanding of IE code

 Difficult to triage

 Low-Hanging Fruit is Gone

 This bug has existed since IE5

 Initial flaw can be found by smart fuzzing. How
would you do that?

 Exploitation should require 2-3 flaws for reliability

25

More Reading

http://www.openrce.org/articles/

Shellcoder’s Handbook

http://www.Rootkits.com

http://peachfuzzer.com/

http://www.openrce.org/articles/
http://www.openrce.org/articles/
http://www.rootkits.com/
http://peachfuzzer.com/

Thank you for coming!
alex@isecpartners.com

newsham@lava.net

