

Tim Newsham and Alex Stamos

Stanford CS155

April 6, 2010

Bug Finding Techniques

2

Your Humble Narrators

 Tim Newsham

 Security Researcher

 ISS, SNI, NAI, Guardent, @stake, iSEC

 U of Hawaii BSEE, U of Arizona MSCS

 Alex Stamos

 Co-Founder and Partner

 LBNL, Loudcloud, @stake

 UC Berkeley BS EECS

3

Agenda

 Why are you finding bugs?

 Overview of common techniques

 Fuzzing

 Debugging and Process Stalking

 Reverse Engineering

 Demo

 Discussion

4

Why are you finding bugs?

Black Hat

 Researcher Security Engineer

Disassembly

Fuzzing

Source Review

Stolen Source
Review

Static Analysis Debugging

5

Bertha the Black Hat of Ill Repute

 Goal

 Dependable Exploitation

 Stealthy

 Thoroughness

 Usually only need one bug

 No need to document
coverage

 Access

 Often no source

6

Marvin the Megalomaniacal Researcher

 Goal
 Column inches from press, props

from friends

 Preferably in a trendy platform

 Make money from ZDI/Pwn2Own

 Thoroughness
 Don’t need to be perfect, don’t want

to be embarrassed

 Access
 Casual access to engineers

 Source == Lawyers

7

Sally the Stressed Security Engineer

 Goal

 Find as many flaws as possible

 Reduce incidence of exploitation*

 Thoroughness

 Must have coverage metrics

 Should at least find low-hanging fruit

 Access

 Source code, debug symbols, engineers

 Money for tools and staff

8

The Difficulty of Defense

So, oft in theologic wars
 The disputants, I ween,
Rail on in utter ignorance
 Of what each other mean,
And prate about an Elephant
Not one of them has seen!

9

The Difficulty of Defense

 Asymmetric Warfare

 Defenders always have to be perfect

 Attackers can be good and lucky

 Knowing this, is bug finding an efficient defense
strategy?

10

Limitations of Today’s Lecture

 The most important flaws we find are NOT
implementation flaws

 Common problems:

 Trusting untrusted components

 Poor use of cryptography

 Overreliance on DRM

 Forgotten or cut security features

11

Black Box Bug Finding

 Basic goal is to exercise all states of software while
watching for a response that indicates vulnerability

Exercise

• Manual manipulation

• Fuzzing

• Process hooking

Watch for response

• Process stalking

• Debugging

• Emulation

Determine
exploitability

• Disassembly

• Debugging

12

Fuzzing

13

“Smarter Fuzzing”

 Record or implement path through gating functions

 Utilize knowledge of protocol or file format

 Use process hooking

14

Debugging

15

Reverse Engineering

 Decompilation
 Often used for semi-compiled code

 .Net CLR

 Java

 Flash

 Can work with C++ w/ symbols

 Disassembly
 1:1 matching with machine code

 Modern disassemblers allow for highly automated analysis
process

 Protocol Reverse Engineering

16

Disassembly - IDA Pro

17

Reversing Patches - BinDiff

18

Defeating Black Box Bug Analysis

 Many programs include anti-debug functionality

 Check PDB

 System calls, monitor process space

 Throw INTs, test for catch

 Timing tests

 Anti-Reversing

 Dynamic Unpacking

 Pointer Arithmetic

 Encrypted and obfuscated function calls

19

Anti-Anti-Debug - Snitch

20

Snitch Output on WMP
Potential break-point debugger check at 0x4bf9f889 (blackbox.dll)

 Exception handler 1 is at 0x4bf9fe71 (blackbox.dll)

 Exception handler 2 is at 0x7c839ac0 (kernel32.dll)

Potential break-point debugger check at 0x4bf9f9fc (blackbox.dll)

 Exception handler 1 is at 0x4bf9fe71 (blackbox.dll)

 Exception handler 2 is at 0x7c839ac0 (kernel32.dll)

Potential break-point debugger check at 0x4bf9f889 (blackbox.dll)

 Exception handler 1 is at 0x4bf9fe71 (blackbox.dll)

 Exception handler 2 is at 0x7c839ac0 (kernel32.dll)

Potential break-point debugger check at 0x4bf9f889 (blackbox.dll)

 Exception handler 1 is at 0x4bf9fe71 (blackbox.dll)

 Exception handler 2 is at 0x7c839ac0 (kernel32.dll)

Potential break-point debugger check at 0x4bf9f889 (blackbox.dll)

 Exception handler 1 is at 0x4bf9fe71 (blackbox.dll)

 Exception handler 2 is at 0x7c839ac0 (kernel32.dll)

Potential OutputDebugString debugger check at 0x7c812aeb

 Module: \Device\HarddiskVolume1\WINDOWS\system32\kernel32.dll

Potential break-point debugger check at 0x4df75f36 (drmv2clt.dll)

 Exception handler 1 is at 0x4dfda68e (drmv2clt.dll)

 Exception handler 2 is at 0x7c839ac0 (kernel32.dll)

21

White Box Bug Finding

 Black Box techniques always work better with more context
 More quickly triage flaws

 Patch flaws much faster

 Analysis can start with source code
 Look at sensitive areas

 Use lexical analysis to give pointers
 Flawfinder

 RATS

 Use semantic analysis
 Coverity

 Fortify

 Most White Box techniques also increase false positive count

22

Hard to Find Bugs

 MS10-002 – Remote Code Execution in IE 5-8

function window :: onload ()

{

 var SourceElement = document.createElement ("div");

 document.body.appendChild (SourceElement);

 var SavedEvent = null;

 SourceElement.onclick = function () {

 SavedEvent = document.createEventObject (event);

 document.body.removeChild (event.srcElement);

 }

 SourceElement.fireEvent ("onclick");

 SourceElement = SavedEvent.srcElement;

}

23

Hard to Find Bugs

 How does this become a reliable exploit?
 Heap spraying allows for predictable control of memory space

 IE Small Block Manager Reuses Pages

 Asynchronous Garbage Collection can be synchronized by
attacker: CollectGarbage()

 How about on more modern OSes?
 ASLR and DEP defeated with Flash JIT

 Return Oriented Programming
http://cseweb.ucsd.edu/~hovav/talks/blackhat08.html

 Good analyses of Aurora Exploit:
http://www.geoffchappell.com/viewer.htm?doc=notes/security/aurora/index.htm

 http://www.hbgary.com/wp-content/themes/blackhat/images/hbgthreatreport_aurora.pdf

http://cseweb.ucsd.edu/~hovav/talks/blackhat08.html
http://cseweb.ucsd.edu/~hovav/talks/blackhat08.html
http://www.geoffchappell.com/viewer.htm?doc=notes/security/aurora/index.htm
http://www.geoffchappell.com/viewer.htm?doc=notes/security/aurora/index.htm
http://www.hbgary.com/wp-content/themes/blackhat/images/hbgthreatreport_aurora.pdf
http://www.hbgary.com/wp-content/themes/blackhat/images/hbgthreatreport_aurora.pdf
http://www.hbgary.com/wp-content/themes/blackhat/images/hbgthreatreport_aurora.pdf
http://www.hbgary.com/wp-content/themes/blackhat/images/hbgthreatreport_aurora.pdf

24

Future of Bug Finding

 How could you find this bug?

 Requires understanding of IE code

 Difficult to triage

 Low-Hanging Fruit is Gone

 This bug has existed since IE5

 Initial flaw can be found by smart fuzzing. How
would you do that?

 Exploitation should require 2-3 flaws for reliability

25

More Reading

http://www.openrce.org/articles/

Shellcoder’s Handbook

http://www.Rootkits.com

http://peachfuzzer.com/

http://www.openrce.org/articles/
http://www.openrce.org/articles/
http://www.rootkits.com/
http://peachfuzzer.com/

Thank you for coming!
alex@isecpartners.com

newsham@lava.net

