
Worms and Bots
CS155

Elie Bursztein

Outline

• Worm Generation 1

• Botnet

• Fast Flux

• Worm Generation 2

• Underground Economy

Worms
generation 1

4

Worm

A worm is self-replicating software designed to
spread through the network
 Typically, exploit security flaws in widely used services

 Can cause enormous damage

 Launch DDOS attacks, install bot networks

 Access sensitive information

 Cause confusion by corrupting the sensitive information

5

Cost of worm attacks

Morris worm, 1988
 Infected approximately 6,000 machines

 10% of computers connected to the Internet
 cost ~ $10 million in downtime and cleanup

Code Red worm, July 16 2001
 Direct descendant of Morris’ worm
 Infected more than 500,000 servers

Programmed to go into infinite sleep mode July 28
 Caused ~ $2.6 Billion in damages,

Love Bug worm: $8.75 billion

Statistics: Computer Economics Inc., Carlsbad, California

6

Internet Worm (First major
attack)

Released November 1988
 Program spread through Digital, Sun workstations
 Exploited Unix security vulnerabilities

VAX computers and SUN-3 workstations running
versions 4.2 and 4.3 Berkeley UNIX code

Consequences
 No immediate damage from program itself
 Replication and threat of damage

Load on network, systems used in attack
Many systems shut down to prevent further attack

7

Some historical worms
of note

Worm Date Distinction

Morris 11/88 Used multiple vulnerabilities, propagate to “nearby” sys

ADM 5/98 Random scanning of IP address space

Ramen 1/01 Exploited three vulnerabilities

Lion 3/01 Stealthy, rootkit worm

Cheese 6/01 Vigilante worm that secured vulnerable systems

Code Red 7/01 First sig Windows worm; Completely memory resident

Walk 8/01 Recompiled source code locally

Nimda 9/01 Windows worm: client-to-server, c-to-c, s-to-s, …

Scalper 6/02 11 days after announcement of vulnerability; peer-to-peer
network of compromised systems

Slammer 1/03 Used a single UDP packet for explosive growth

Kienzle and Elder

8

Increasing propagation
speed

Code Red, July 2001
 Affects Microsoft Index Server 2.0,

 Windows 2000 Indexing service on Windows NT 4.0.

 Windows 2000 that run IIS 4.0 and 5.0 Web servers

 Exploits known buffer overflow in Idq.dll

 Vulnerable population (360,000 servers) infected in 14 hours

SQL Slammer, January 2003
 Affects in Microsoft SQL 2000

 Exploits known buffer overflow vulnerability

 Server Resolution service vulnerability reported June 2002

 Patched released in July 2002 Bulletin MS02-39

 Vulnerable population infected in less than 10 minutes

9

Code Red

Initial version released July 13, 2001
 Sends its code as an HTTP request
 HTTP request exploits buffer overflow
 Malicious code is not stored in a file

Placed in memory and then run
When executed,
 Worm checks for the file C:\Notworm

 If file exists, the worm thread goes into infinite sleep state
 Creates new threads

 If the date is before the 20th of the month, the next 99
threads attempt to exploit more computers by targeting
random IP addresses

10

Code Red of July 13 and July 19

Initial release of July 13
 1st through 20th month: Spread

 via random scan of 32-bit IP addr space

 20th through end of each month: attack.
 Flooding attack against 198.137.240.91 (www.whitehouse.gov)

 Failure to seed random number generator ⇒ linear growth

Revision released July 19, 2001.
 White House responds to threat of flooding attack by changing

the address of www.whitehouse.gov

 Causes Code Red to die for date ≥ 20th of the month.
 But: this time random number generator correctly seeded

Slides: Vern
Paxson

11

Infection rate

12

Measuring activity: network
telescope

Monitor cross-section of Internet address space, measure traffic
 “Backscatter” from DOS floods
 Attackers probing blindly
 Random scanning from worms

LBNL’s cross-section: 1/32,768 of Internet

UCSD, UWisc’s cross-section: 1/256.

13

Spread of Code Red

Network telescopes estimate of # infected hosts:
360K. (Beware DHCP & NAT)
Course of infection fits classic logistic.
Note: larger the vulnerable population, faster the
worm spreads.

That night (⇒ 20th), worm dies …
 … except for hosts with inaccurate clocks!

It just takes one of these to restart the worm on
August 1st … Slides: Vern

Paxson

14

Slides: Vern
Paxson

15

Code Red 2

Released August 4, 2001.
Comment in code: “Code Red 2.”
 But in fact completely different code base.

Payload: a root backdoor, resilient to reboots.
Bug: crashes NT, only works on Windows 2000.

Localized scanning: prefers nearby addresses.

Kills Code Red 1.

Safety valve: programmed to die Oct 1, 2001.
Slides: Vern

Paxson

16

Striving for Greater
Virulence: Nimda

Released September 18, 2001.
Multi-mode spreading:
 attack IIS servers via infected clients
 email itself to address book as a virus
 copy itself across open network shares
 modifying Web pages on infected servers w/ client

exploit
 scanning for Code Red II backdoors (!)

 worms form an ecosystem!
Leaped across firewalls. Slides: Vern

Paxson

17

Code Red 2 kills
off Code Red 1

Code Red 2 settles into
weekly pattern

Nimda enters the
ecosystem

Code Red 2 dies off as
programmed

CR 1
returns
thanks
to bad
clocks

Slides: Vern
Paxson

18

How do worms
propagate?

Scanning worms : Worm chooses “random” address

Coordinated scanning : Different worm instances scan different addresses

Flash worms
 Assemble tree of vulnerable hosts in advance, propagate along tree

 Not observed in the wild, yet

 Potential for 106 hosts in < 2 sec ! [Staniford]

Meta-server worm :Ask server for hosts to infect (e.g., Google for
“powered by phpbb”)

Topological worm: Use information from infected hosts (web server logs,
email address books, config files, SSH “known hosts”)

Contagion worm : Propagate parasitically along with normally initiated
communication

slammer

• 01/25/2003

• Vulnerability disclosed : 25 june 2002

• Better scanning algorithm

• UDP Single packet : 380bytes

Slammer propagation

Number of scan/sec

Packet loss

A server view

Consequences

• ATM systems not available

• Phone network overloaded (no 911!)

• 5 DNS root down

• Planes delayed

25

Worm Detection and Defense
Detect via honeyfarms: collections of “honeypots” fed
by a network telescope.
 Any outbound connection from honeyfarm = worm.

(at least, that’s the theory)

 Distill signature from inbound/outbound traffic.
 If telescope covers N addresses, expect detection when worm

has infected 1/N of population.

Thwart via scan suppressors: network elements that
block traffic from hosts that make failed connection
attempts to too many other hosts
 5 minutes to several weeks to write a signature
 Several hours or more for testing

26

months

days

hrs

mins

secs

Program
Viruses Macro

Viruses E-mail
Worms Network

Worms

Flash
Worms

Pre-
automation

Post-
automation

C
on

ta
gi

on
 P

er
io

d

Si
gn

at
ur

e
R

es
po

ns
e

Pe
rio

d

Need for automation
•Current threats can spread faster than defenses can reaction

•Manual capture/analyze/signature/rollout model too slow

1990 Time 2005

Contagion Period
Signature Response Period

Slide: Carey Nachenberg, Symantec

27

Signature inference

Challenge
 need to automatically learn a content “signature” for each

new worm – potentially in less than a second!

Some proposed solutions
 Singh et al, Automated Worm Fingerprinting, OSDI ’04

 Kim et al, Autograph: Toward Automated, Distributed
Worm Signature Detection, USENIX Sec ‘04

28

Signature inference

Monitor network and look for strings
common to traffic with worm-like
behavior
Signatures can then be used for content

filtering

Slide: S Savage

29

Content sifting

Assume there exists some (relatively) unique invariant
bitstring W across all instances of a particular worm (true
today, not tomorrow...)

Two consequences
 Content Prevalence: W will be more common in traffic than

other bitstrings of the same length

 Address Dispersion: the set of packets containing W will address
a disproportionate number of distinct sources and destinations

Content sifting: find W’s with high content prevalence
and high address dispersion and drop that traffic

Slide: S Savage

30

Observation:
High-prevalence strings are rare

(Stefan Savage, UCSD *)

Only 0.6% of the 40 byte substrings repeat more
than 3 times in a minute

31

 Address Dispersion Table
 Sources Destinations Prevalence Table

The basic algorithm

Detector in
network

A B

cnn.com

C

DE

(Stefan Savage, UCSD *)

32

1 (B)1 (A)

 Address Dispersion Table
 Sources Destinations

1

 Prevalence Table

Detector in
network

A B

cnn.com

C

DE

(Stefan Savage, UCSD *)

33
1 (A)1 (C)
1 (B)1 (A)

 Address Dispersion Table
 Sources Destinations

1
1

 Prevalence Table

Detector in
network

A B

cnn.com

C

DE

(Stefan Savage, UCSD *)

34
1 (A)1 (C)

2 (B,D)2 (A,B)

 Address Dispersion Table
 Sources Destinations

1
2

 Prevalence Table

Detector in
network

A B

cnn.com

C

DE

(Stefan Savage, UCSD *)

35
1 (A)1 (C)

3
(B,D,E)

3
(A,B,D)

 Address Dispersion Table
 Sources Destinations

1
3

 Prevalence Table

Detector in
network

A B

cnn.com

C

DE

(Stefan Savage, UCSD *)

Project 2

Project Status

• 30% of submission came in before 4pm
• Some submission are late

Background

• Network security is about packets
manipulation

• DDOS

• Firewall / NAT

• Man in the middle

• Network Scouting

Project goal

• Crafting packet

• Understand sniffing

• Understand Firewall and routing

• Understand Network debugging

Botnet

Outline

• Worm Generation 1

• Botnet

• Fast Flux

• Worm Generation 2

• Underground Economy

What is a botnet ?

botmaster

swarm

C & C

Bot

Bot

Bot

Bot

Centralized botnet

BotBot Bot

C&C

Bot

Botmaster

Centralized

C&C centralized Stat

World wild problem

Type of botnet

BotBot Bot

C&C C&C

Bot

Botmaster

Distributed

Example Storm

• Also known as W32/Peacomm Trojan

• Use P2P communication : kademlia

• Command are stored into the DHT
table

History

• Started in January 2007

• First email title : 230 dead as storm
batters Europe

Key feature

• Smart social engineering

• Use client side vulnerabilities

• Hijack chat session to lure user

• Obfuscated C&C

• Actively updated

• Use Spam templates

Smart SPAM

• Venezuelan leader: "Let's the War beginning".

• U.S. Southwest braces for another winter blast. More
then 1000 people are dead.

• The commander of a U.S. nuclear submarine lunch
the rocket by mistake.

• The Supreme Court has been attacked by terrorists.
Sen. Mark Dayton dead!

• Third World War just have started!

• U.S. Secretary of State Condoleezza Rice has kicked
German Chancellor Angela Merkel

A Multi-perspective Analysis of the Storm (Peacomm) Worm
Phillip Porras and Hassen Sa¨ıdi and Vinod Yegneswaran

More recently

• Valentine day

• Obama victory

• 1 april

Composition

• game0.exe - Backdoor/downloader

• game1.exe - SMTP relay

• game2.exe - E-mail address stealer

• game3.exe - E-mail virus spreader

• game4.exe - Distributed denial of
service (DDos) attack tool

• game5.exe - Updated copy of Storm

• 128 bit
md4=<ip><port><2
bytes flag>

31

• Runs these commands to synchronize time:

o WinExec “w32tm.exe /config /syncfromflags:manual

/manualpeerlist:time.windows.com,time.nist.gov”

o WinExec “w32tm.exe /config /update”

• Spreads by copying itself to local and remote drives by searching for .exe files in

the folder. If a .exe file is present it copies itself to that folder

• Creates a key value for a unique ID of the node on a P2P network. Sets the key to

0x1F6F6DD0= (527396304)10

HKEY_LOCAL_MACHINE\Microsoft\Windows\ITStorage\Finders\ID

• Creates a file named msvupdater.config in %Windir%\ which contains

information about the peers to connect to.

Figure 9: Peer List File

The file contains the unique ID of the computer on the network. The registry entry

for it was set as explained in the previous point. It contains the port number to use

to connect to other peers and lastly the list of peers in the format:

<128 bit md4 hash>=<IP address><Port><2 byte flag>

RDV point

• Compute a secret Key value

• Use a random generator

• A secret seed

• The time

sub_403389

 VMWare check

L_403524

push 5F5E100h ; dwMilliseconds

call ds:Sleep

jmp short loc_403524

Virtual PC Check

L_4033BA:

L_4033FC:

L_403439:

L_403417:

L_40342A:

L_403487:

L_403505:

L_4034A6

L_403515

L_4034A8:

L_4034C8:

L_4034DE:

L_4034FC

sub_403318

L_40332D:

L_40336F:

L_4033B0:

L_40338E:

L_4033A1:

L_403403:

L_403480:

L_403422

L_403490

L_403424:

L_403444:

L_403459:

L_403477

Figure 2: Difference between two versions of Storm. On the left we have applet.exe with VMware and Virtual PC checks. On
the right we have labor.exe with no checks for virtual machine environments.

6

A Multi-perspective Analysis of the Storm (Peacomm) Worm
Phillip Porras and Hassen Sa¨ıdi and Vinod Yegneswaran

sub_403318

Initialize and Set

 Security Descriptor

Create spooldr.ini file

 and

 WSAStartup

 Write/Rewrite spooldr.ini file

 and

 Set Socket Options

 eDonkey Handler

sleep 10 minutes

Internet Set Options

 and

 Update or Downlowd new executables

SMTP (SPAM) Logic

Exit L_403459:

Sleep Forever

Figure 3: Overview of Storm’s Logic

We create a function at this address with the name start, and we identify function sub 403318 as the implementation of
the core of Storm’s logic. To understand Storm’s logic, we need to generate a clean assembly that will allow us to build a
control flow graph (CFG) of its code, recover all API calls, and identify their arguments. The first observation to note is that
unlike other Storm variants, the main function sub 403318 in our version labor.exe does not start with some checks for virtual
platforms such as VMware and Virtual PC.

To illustrate the differences between these two versions, we display in Figure 2 the control flow graphs of the two versions.
The figure on the left side is applet.exe with VMware and Virtual PC checks. The figure on the right is labor.exe with no
checks for virtual machine environments. Our static analysis tool-set allows us to quickly identify difference between different
versions of malware and allows us to focus our attention on the key difference between versions. In subsequent subsections,
we will explore the common functionality among the different versions of Storm that we analyzed. Newer versions of Storm
seem to have dropped the checks for virtual environments often used by malware analyzers, in favor of encrypting the drivers
that are created. This suggests that the malware’s writers are far more interested in taking total control of infected hosts, hiding
themselves from host monitoring software, and hiding the techniques that are employed to do so.

2.3.1 Storm Logic’s Overview

Figure 3 illustrates a high-level annotation of the different blocks of Storm’s code. Storm’s code contains an initialization phase
where the initialization file spooldr.ini is created and initialized, followed by a network initialization phase where Storm
specifies the version of Windows Sockets required and retrieves details of the specific Windows Sockets implementation. Once
the initialization phase is completed, the malware uses spooldr.ini as a seed list of hosts to contact for further coordination
with infected peers. The coordination is achieved using the eDonkey/Overnet protocol. The malware retries to initiate such
communication every ten minutes if no hosts in the initial list of peers are responsive. If some of the hosts are responsive, three
main activities are triggered:

• Update the list of peers and store the new list in spooldr.ini.

• Initiate download of new spam templates or updates of existing executables.

• Initiate spamming and denial of service (Dos) activities.

7

Overview of the logig

A Multi-perspective Analysis of the Storm (Peacomm)
 Worm Phillip Porras and Hassen Sa¨ıdi and Vinod
Yegneswaran

start

sub_403318

Initialize_UDP_and_Publicize eDonkey_handler

socket_UDP Publicize Set_Timer

Figure 4: Overnet/eDonkey Protocol

The labeling of code blocks is achieved by first identifying all Windows API calls, their arguments, possible strings and
numerical value references in each block, labeling each block by applying an ontology based on the ordering of API calls.
This allows us to automatically identify the higher-level functionality of the malware instance such as networking activities and
modifications to the local host. Based on the initial automated annotation, a more in-depth labeling is produced as in Figure3.

2.3.2 Initialization Phase

The initialization phase starts by creating a security descriptor for the file. This profile determines the level of access to the file.
The descriptor is initialized with a null structure. Therefore, access is denied to the file so the process cannot be probed during
execution. After the security descriptor initialization, the P2P component of the malware is initialized. A hard-coded list of 290
peers (number varies based on Strom version) shipped in the body of the malware is used to initialize the spooldr.ini file.
Section 3 explains how the list of IP addresses of peers to contact is extracted from the spooldr.ini file format.

2.3.3 Overnet/eDonkey Communication Logic

Once the initial list of peers is established, the bulk of Storm’s logic is executed using the Overnet/eDonkey protocol. A
random list of peers is contacted by the infected host. If all communications do not result in an answer, the malware sleeps
for 10 minutes and restarts the process of contacting its peers. The eDonkey protocol is executed in a block of instructions at
address 0x004033B. It first initializes sockets to use the UDP protocol and issues a Publicize message to the peers it contacts.

loc_4033B0: ; CODE XREF: sub_403318+74
xor bl, bl
call Initialize_UDP_and_Edonkey_PUBLICIZE ; socket is called

; with argument 11h = 17
; for UDP protocol

mov esi, eax
mov eax, [esi]
mov ecx, esi
call Edonkey_CONNECT_SEARCH_and_PUBLISH ; Respond to Publicize_ACK,

; Search, and Publish,
; and update spooldr.ini

test al, al
jz short loc_40338E

The control flow graph that corresponds to block 0x004033B is given in Figure 4. It shows how the first eDonkey communi-
cation initiated by the host is a Publicize command, followed by a call to the function edonkey handler that manages incoming
responses to the various eDonkey commands issued by the infected host. Our Static analysis of the eDonkey protocol imple-
mented in Storm is correlated with the observed network traffic described in Section 3, in particular Figure 10 that illustrates
the outbound traffic generated by Storm. Figure 5 shows the control flow graph of the eDonkey protocol handler and illustrates
how Storm dialog sequences are generated. Our static analysis is correlated with the network analysis findings and corresponds
to the observed traffic.

8

overnet protocol

A Multi-perspective Analysis of the Storm (Peacomm) Worm
Phillip Porras and Hassen Sa¨ıdi and Vinod Yegneswaran

Overnet protocol
handler

eDonkey_handler:

cmp byte ptr eax, 0E3h ; 0xe3 eDonkeay header

jz short loc_40AE0D

L_40AE0D:

cmp edx, 0Eh ; received a Search

true

L_40AE06:

xor al, al

jmp loc_40AED1

false

L_40AE77:

cmp edx, 10h ; Search Info

jz short loc_40AEC2

true block_label_2

false

L_40AED1

L_40AEC2:

call edonkey_SEARCH_RESULT_and_SEARCH_END

true

block_label_8:

cmp edx, 13h ; Publish

jz short loc_40AEB1

false

L_40AE66:

call edonkey_SEARCH_NEXT

jmp short loc_40AED1

true

block_label_3:

sub edx, 0Ah ; Connect

jz short loc_40AE55

false

L_40AEB1:

call edonkey_PUBLISH_ACK

jmp short loc_40AED1

true

block_label_9:

cmp edx, 1Bh ; IP_Query

jz short loc_40AEA0

false

true

L_40AE55:

call edonkey_CONNECT_REPLY

jmp short loc_40AED1

true

block_label_4

false

true

L_40AEA0:

call edonkey_IP_QUERY_ANSWER

jmp short loc_40AED1

true

block_label_10:

cmp edx, 1Eh ; eDonkey 0x1e

jz short loc_40AEA0

false L_40AE4A:

true

block_label_5

false

true

block_label_11::

call edonkey_15 ; eDonkey 0x15

false L_40AE36:

true

block_label_6

false

true

block_label_7:

false

Figure 5: Overnet/eDonkey Protocol Handler

The interaction of Storm with its peers through the eDonkey protocol determines the next phase of execution of the malware.
If the malware is unable to connect to the network or does not reach its peers, then it tries a connection every ten minutes. If a
subset of the peers responds, then one of the following happens:

• Updates spooldr.ini with hashes of new peers;

• Downloads executables or updates existing executables;

• Scans the drives and collects email addresses and generates spam messages and DoS attacks.

2.3.4 Internet Download and Update

One particular dialog sequence of the eDonkey protocol results in a remote data retrieval of files that are downloaded on the
infected host. We have identified the code that handles such downloads and describes its call graph in Figure 6. The malware
writers seem to even have included entire utilities such as inflate.c from Zlib to handle downloaded compressed files.

2.3.5 Drive Scan

Storm has the ability to scan the drive of the infected computer to examine file content as shown in Figure 7. Files with the
following extensions are scanned for their content: .txt, .msg, .htm, .shtm, .stm, .xml, .dbx, .mbx, .mdx, .eml,
.nch, .mmf, .ods, .cfg, .asp, .php, .pl, .wsh, .adb, .tbb, .sht, .xls, .oft, .uin, .cgi, .mht, .dhtm,
.jsp, .dat, and .lst.

9

A Multi-perspective Analysis of the Storm (Peacomm) Worm
Phillip Porras and Hassen Sa¨ıdi and Vinod Yegneswaran

Detecting Storm
0 3600 7200 10800 14400 18000

Time (in seconds)

0

500

1000

1500

M
es

sa
g
e

co
u
n
t

(p
er

 5
 m

in
s)

PUBLICIZE
PUBLICIZE_ACK

CONNECT
CONNECT_REPLY

0 3600 7200 10800 14400 18000
Time (in seconds)

0

500

1000

M
es

sa
g
e

co
u
n
t

(p
er

 5
 m

in
s)

SEARCH
SEARCH_NEXT

SEARCH_INFO

SEARCH_END

SEARCH_RESULT

0 3600 7200 10800 14400 18000 21600
Time (in secs)

0

50

100

150

200

P
ac

k
et

 c
o
u
n
t

(p
er

 5
 m

in
s)

PUBLISH
PUBLISH_ACK

IP_QUERY

IP_QUERY_ANSWER

IP_QUERY_END

EDONKEY_33

Figure 11: Time Volume Graph: Storm Inbound Dialog

0 3600 7200 10800 14400 18000 21600
Time (in seconds)

10

100

1000

10000

P
ac

k
et

 /
 M

ai
l

/
S

er
v
er

 C
o
u
n
t

(p
er

 5
 m

in
s)

10

100

1000

10000

TCP PKTS
SMTP PKTS
SMTP EMAILS
SMTP SERVERS

Figure 12: Time Volume Graph: TCP / SMTP Communication Figure 13: Dialog States of Storm

2. EXPLOIT LAUNCH EVENTS: Applicable to scan-and-infect malware. Here the internal victim host is attacked
through a remote-to-local network communication channel. Storm and other spam bots propagate through email URL
Link downloads and are then executed within the victim host.

3. EGG DOWNLOAD EVENTS: Applicable and detectable across malware families. Once infected, a compromised host
is subverted to download and execute the full bot client codebase from a remote egg download site, usually from the
attack source. However, in the case of Storm, this communication stage is observed over periods that are well delayed
from the point of initial infection, sometimes many hours into the infection lifetime.

4. COMMAND AND COORDINATION EVENTS: Applicable to traditional C&C botnets. This communication stage is
traditionally observed in botnets that support centralized C&C communication servers, such as IRC-based botnets. Storm
peer-to-peer botnets utilize a peer-based coordination scheme.

5. OUTBOUND ATTACK PROPAGATION EVENTS: Applicable and detectable across all self-propagating malware
families. This communication phase represents actions by the local host that indicate it is attempting to attack other
systems or perform actions to propagate infection. In the case of spambots such as Storm, attack propagation can readily
be discerned by the rapid and prolific communication of a non-SMTP-server local asset suddenly sending SMTP mail
transactions to a wide range of external SMTP servers. In addition, spam and P2P bots both generate high rates of TCP
and UDP connections to external addresses, often triggering intense streams of outbound port and IP address sweep
dialog alarms.

Example Outbound Attack Propagation Heuristics:

alert tcp !$SMTP_SERVERS any -> $EXTERNAL_NET 25 (msg:
"BLEEDING-EDGE POLICY Outbound Multiple Non-SMTP Server Emails";

14

A Multi-perspective Analysis of the Storm (Peacomm) Worm
Phillip Porras and Hassen Sa¨ıdi and Vinod Yegneswaran

How storm work

• Connect to Overnet
• Download Secondary Injection URL

(hard coded key)
• Decrypt Secondary Injection URL
• Download Secondary Injection
• Execute Secondary Injection

Peer-to-Peer Botnets: Overview and Case Study
Julian B. Grizzard Vikram Sharma, Chris Nunnery, David Dagon

Weakness

• Initial peer list

• sybil attack

• Index poisoning

Network view

Command and control structures in malware: From Handler/Agent to P2P, by Dave

Dittrich and Sven Dietrich, USENIX ;login: vol. 32, no. 6, December 2007, pp. 8-17

Comparison

Communication
system

Communication
system SecuritySecurity

Design
complexity

Channel
type

Message
latency

Detectability Resilience

Centralized Low Bidirecti
onnal Low High Low

Distributed High Unidirecti
onnal High Low High

Fast Flux

Outline

• Worm Generation 1

• Botnet

• Fast Flux

• Worm Generation 2

• Underground Economy

Goal

• Resilient service hosting

• Prevent tracing

Receipt

• One domain

• Round robin DNS capability

• Thousand of IP (bots)

• Short TTL

Normal Hosting

Single Fast Flux

normal hosting

DNS

Simple flux

Double Fast Flux

Simple flux

Real world Fast flux

 ;; WHEN: Wed Apr 4 18:47:50 2007

login.mylspacee.com. 177 IN A 66.229.133.xxx [c-66-229-133-xxx.hsd1.fl.comcast.net]

login.mylspacee.com. 177 IN A 67.10.117.xxx [cpe-67-10-117-xxx.gt.res.rr.com]

login.mylspacee.com. 177 IN A 70.244.2.xxx [adsl-70-244-2-xxx.dsl.hrlntx.swbell.net]

login.mylspacee.com. 177 IN A 74.67.113.xxx [cpe-74-67-113-xxx.stny.res.rr.com]

login.mylspacee.com. 177 IN A 74.137.49.xxx [74-137-49-xxx.dhcp.insightbb.com]

mylspacee.com. 108877 IN NS ns3.myheroisyourslove.hk.

mylspacee.com. 108877 IN NS ns4.myheroisyourslove.hk.

mylspacee.com. 108877 IN NS ns5.myheroisyourslove.hk.

mylspacee.com. 108877 IN NS ns1.myheroisyourslove.hk.

mylspacee.com. 108877 IN NS ns2.myheroisyourslove.hk.

ns1.myheroisyourslove.hk.854 IN A 70.227.218.xxx [ppp-70-227-218-xxx.dsl.sfldmi.ameritech.net]

ns2.myheroisyourslove.hk.854 IN A 70.136.16.xxx [adsl-70-136-16-xxx.dsl.bumttx.sbcglobal.net]

ns3.myheroisyourslove.hk. 854 IN A 68.59.76.xxx [c-68-59-76-xxx.hsd1.al.comcast.net]

honeynet.org

WEB rotation ~4 mn
later

 ;; WHEN: Wed Apr 4 18:51:56 2007 (~4 minutes/186 seconds later)

login.mylspacee.com. 161 IN A 74.131.218.xxx [74-131-218-xxx.dhcp.insightbb.com] NEW

login.mylspacee.com. 161 IN A 24.174.195.xxx [cpe-24-174-195-xxx.elp.res.rr.com] NEW

login.mylspacee.com. 161 IN A 65.65.182.xxx [adsl-65-65-182-xxx.dsl.hstntx.swbell.net] NEW

login.mylspacee.com. 161 IN A 69.215.174.xxx [ppp-69-215-174-xxx.dsl.ipltin.ameritech.net] NEW

login.mylspacee.com. 161 IN A 71.135.180.xxx [adsl-71-135-180-xxx.dsl.pltn13.pacbell.net] NEW

mylspacee.com. 108642 IN NS ns3.myheroisyourslove.hk.

mylspacee.com. 108642 IN NS ns4.myheroisyourslove.hk.

mylspacee.com. 108642 IN NS ns5.myheroisyourslove.hk.

mylspacee.com. 108642 IN NS ns1.myheroisyourslove.hk.

mylspacee.com. 108642 IN NS ns2.myheroisyourslove.hk.

ns1.myheroisyourslove.hk. 608 IN A 70.227.218.xxx [ppp-70-227-218-xxx.dsl.sfldmi.ameritech.net]

ns2.myheroisyourslove.hk. 608 IN A 70.136.16.xxx [adsl-70-136-16-xxx.dsl.bumttx.sbcglobal.net]

ns3.myheroisyourslove.hk. 608 IN A 68.59.76.xxx [c-68-59-76-xxx.hsd1.al.comcast.net]

honeynet.org

NS rotation ~90mn later

 ;; WHEN: Wed Apr 4 21:13:14 2007 (~90 minutes/4878 seconds
later)
ns1.myheroisyourslove.hk. 3596 IN A 75.67.15.xxx [c-75-67-15-
xxx.hsd1.ma.comcast.net] NEW
ns2.myheroisyourslove.hk. 3596 IN A 75.22.239.xxx
[adsl-75-22-239-xxx.dsl.chcgil.sbcglobal.net] NEW
ns3.myheroisyourslove.hk. 3596 IN A 75.33.248.xxx
[adsl-75-33-248-xxx.dsl.chcgil.sbcglobal.net] NEW
ns4.myheroisyourslove.hk. 180 IN A 69.238.210.xxx
[ppp-69-238-210-xxx.dsl.irvnca.pacbell.net] NEW
ns5.myheroisyourslove.hk. 3596 IN A 70.64.222.xxx
[xxx.mj.shawcable.net] NEW

Detection / Mitigation

• Fast Flux are very “noisy”

• Many A name

• Quick rotation

• Many NS

• Quick rotation

Worms
Generation 2

Outline

• Worm Generation 1

• Botnet

• Fast Flux

• Worm Generation 2

• Underground Economy

Conficker 2008-2009

• Most important Worm since Slammer

• 4 years have passed..

• Vulnerability in Server Service

• 2000, XP, Vista, 2003, and 2008

Windows of
Vulnerability

• Found in the wild

• Announced by MS 22 Oct 2008

• Out of band patch 26 Oct 2008

• Public Exploit 26 Oct 2008

• Conficker : Early november

Tech details

• Buffer overflow in the RPC code

• Port 139 / 445

• Neeris did adopt it as well (Apr 09)

• First version dev by chinese hackers
(37$)

Tech Details 2

• Use a non standard overflow

• Use a fixed shellcode

• Re-infection is used to update binary

• Blacklist Ukrainian ISP / Language

• Use named mutex for version conflict

• Use HTTP request to popular domains
for time sync (A / B)

Port activity

sans.org

Numbers

• Total IP Addresses: 10,512,451

• Total Conficker A IPs: 4,743,658

• Total Conficker B IPs: 6,767,602

• Total Conficker AB IPs: 1,022,062

SRI

Conficker A 2008-11-21

• Infection : Netbios MS08-067

• propagation HTTP pull / 250 rand / 8
TLD

• Defense : N/A

• End usage : update to version B,C or D

Conficker B 2008-12-29

• Infection :
• Netbios MS08-067
• Removable Media via DLL

• propagation
• HTTP pull / 250 rand / 8 TLD
• Netbios Push : patch for reinjection

• Defense :
• Blocks DNS lookups
• Disables AutoUpdate

• End usage : update to version C or D

Difference between B/C

• Designed to counter counter-measure

• 15% of the original B code base
untouched

• New thread architecture

• P2P addition

Conficker C 2009-03-04

• Infection :
• Netbios MS08-067
• Removable Media via DLL
• Dictionary attack on $Admin

• propagation

• HTTP pull / 250 rand / 8 TLD
• Netbios Push : patch for reinjection
• Create named pipe

• Defense :
• Blocks DNS lookups
• Disables AutoUpdate

Conficker D 2009-03-04

• propagation
• HTTP pull / 50 000 rand / 110 TLD
• P2P push / pull custom protocol

• Defense :
• Disables Safe Mode
• Kills anti-malware
• in-memory patch of DNSAPI.DLL to block lookups of

anti-malware related web sites
• End usage : update to version E

Conficker E 2009-07-04

• Downloads and
installs additional
malware:

• Waledac spambot

• SpyProtect 2009
scareware

• Removes self on 3 May
2009 (Does not remove
accompanying copy of
W32.Downadup.C) [37]

Binary Security

SRI

Conficker A/B logic

SRI

Rendez vous point

SRI

What does it take
to build such code

• Internet-wide programming skill

• advanced cryptographic skill

• custom dual-layer code packing

• code obfuscation skills

• in-depth knowledge of Windows
internals and security products.

Underground
Economy

Outline

• Worm Generation 1

• Botnet

• Fast Flux

• Worm Generation 2

• Underground Economy

Illicit Activities

• D-DOS
• Extortion

• Identity theft
• Warez hosting
• Spam

• Phising
• Click fraud
• malware distribution

Long Tail application

Text

Black Market Botnets
Nathan Friess and John Aycock

Storm architecture

Figure 1: The Storm botnet hierarchy.

periodically searching for its own OID to stay connected and learn
about new close-by peers to keep up with churn.

Overnet also provides two messages for storing and finding con-
tent in the network: Publish and Search which export a standard
DHT (key,value) pair interface. However, Storm uses this inter-
face in an unusual way. In particular, the keys encode a dynam-
ically changing rendezvous code that allow Storm nodes to find
each other on demand.

A Storm node generates and uses three rendezvous keys simulta-
neously: one based on the current date, one based on the previous
date, and one based on the next date. To determine the correct date,
Storm first sets the system clock using NTP.

In particular, each key is based on a combination of the time
(with 24-hour resolution) mixed with a random integer between 0
and 31. Thus there are 32 unique Storm keys in use per day but
a single Storm bot will only use 1 of the 32. Because keys are
based on time, Storm uses NTP to sync a bot’s clock and attempts
to normalize the time zone. Even so, to make sure bots around
the world can stay in sync, Storm uses 3 days of keys at once, the
previous, current, and next day.

In turn, these keys are used to rendezvous with Storm nodes that
implement the command and control (C&C) channel. A Storm
node that wishes to offer the C&C service will use the time-based
hashing algorithm to generate a key and encode its own IP address
and TCP port into the value. It will then search for the appropriate
peers close to the key and publish its (key, value) pair to them. A
peer wishing to locate a C&C channel can generate a time-based
key and search for previously published values to decode and con-
nect to the TCP network.

3.2 Storm hierarchy
There are three primary classes of Storm nodes involved in send-

ing spam (shown in Figure 1). Worker bots make requests for work
and, upon receiving orders, send spam as requested. Proxy bots
act as conduits between workers and master servers. Finally, the
master servers provide commands to the workers and receive their
status reports. In our experience there are a very small number of
master servers (typically hosted at so-called “bullet-proof” hosting
centers) and these are likely managed by the botmaster directly.

However, the distinction between worker and proxy is one that
is determined automatically. When Storm first infects a host it tests
if it can be reached externally. If so, then it is eligible to become a
proxy. If not, then it becomes a worker.

3.3 Spam engine
Having decided to become a worker, a new bot first checks

whether it can reach the SMTP server of a popular Web-based mail

provider on TCP port 25. If this check fails the worker will remain
active but not participate in spamming campaigns.4

Figure 2 outlines the broad steps for launching spam campaigns
when the port check is successful. The worker finds a proxy (using
the time-varying protocol described earlier) and then sends an up-
date request (via the proxy) to an associated master server (Step 1),
which will respond with a spam workload task (Step 2). A spam
workload consists of three components: one or more spam tem-
plates, a delivery list of e-mail addresses, and a set of named “dic-
tionaries”. Spam templates are written in a custom macro language
for generating polymorphic messages [15]. The macros insert ele-
ments from the dictionaries (e.g., target e-mail addresses, message
subject lines), random identifiers (e.g., SMTP message identifiers,
IP addresses), the date and time, etc., into message fields and text.
Generated messages appear as if they originate from a valid MTA,
and use polymorphic content for evading spam filters.

Upon receiving a spam workload, a worker bot generates a
unique message for each of the addresses on the delivery list and
attempts to send the message to the MX of the recipient via SMTP
(Step 3). When the worker bot has exhausted its delivery list, it
requests two additional spam workloads and executes them. It then
sends a delivery report back to its proxy (Step 4). The report in-
cludes a result code for each attempted delivery. If an attempt was
successful, it includes the full e-mail address of the recipient; oth-
erwise, it reports an error code corresponding to the failure. The
proxy, in turn, relays these status reports back to the associated
master server.

To summarize, Storm uses a three-level self-organizing hierarchy
comprised of worker bots, proxy bots and master servers. Com-
mand and control is “pull-based”, driven by requests from individ-
ual worker bots. These requests are sent to proxies who, in turn,
automatically relay these requests to master servers and similarly
forward any attendant responses back to to the workers.

4. METHODOLOGY
Our measurement approach is based on botnet infiltration — that

is, insinuating ourselves into a botnet’s “command and control”
(C&C) network, passively observing the spam-related commands
and data it distributes and, where appropriate, actively changing
individual elements of these messages in transit. Storm’s archi-
tecture lends itself particularly well to infiltration since the proxy
bots, by design, interpose on the communications between individ-
ual worker bots and the master servers who direct them. Moreover,
since Storm compromises hosts indiscriminately (normally using
malware distributed via social engineering Web sites) it is straight-
forward to create a proxy bot on demand by infecting a globally
reachable host under our control with the Storm malware.

Figure 2 also illustrates our basic measurement infrastructure. At
the core, we instantiate eight unmodified Storm proxy bots within a
controlled virtual machine environment hosted on VMWare ESX 3
servers. The network traffic for these bots is then routed through a
centralized gateway, providing a means for blocking unanticipated
behaviors (e.g., participation in DDoS attacks) and an interposition
point for parsing C&C messages and “rewriting” them as they pass
from proxies to workers. Most critically, by carefully rewriting the
spam template and dictionary entries sent by master servers, we ar-
range for worker bots to replace the intended site links in their spam
with URLs of our choosing. From this basic capability we synthe-
size experiments to measure the click-through and conversion rates
for several large spam campaigns.

4Such bots are still “useful” for other tasks such as mounting coor-
dinated DDoS attacks that Storm perpetrates from time to time.

Text

Spamalytics: An Empirical Analysis of Spam Marketing Conversion
Chris Kanich∗ Christian Kreibich† Kirill Levchenko∗ Brandon Enright∗ Geoffrey M. Voelker∗ Vern Paxson† Stefan
Savage∗

Spam craft

Figure 2: The Storm spam campaign dataflow (Section 3.3)
and our measurement and rewriting infrastructure (Section 4).
(1) Workers request spam tasks through proxies, (2) proxies
forward spam workload responses from master servers, (3)
workers send the spam and (4) return delivery reports. Our
infrastructure infiltrates the C&C channels between workers
and proxies.

In the remainder of this section we provide a detailed description
of our Storm C&C rewriting engine, discuss how we use this tool
to obtain empirical estimates for spam delivery, click-through and
conversion rates and describe the heuristics used for differentiating
real user visits from those driven by automated crawlers, honey-
clients, etc. With this context, we then review the ethical basis
upon which these measurements were conducted.

4.1 C&C protocol rewriting
Our runtime C&C protocol rewriter consists of two components.

A custom Click-based network element redirects potential C&C
traffic to a fixed IP address and port, where a user-space proxy
server implemented in Python accepts incoming connections and
impersonates the proxy bots. This server in turn forwards connec-
tions back into the Click element, which redirects the traffic to the
intended proxy bot. To associate connections to the proxy server
with those forwarded by the proxy server, the Click element injects
a SOCKS-style destination header into the flows. The proxy server
uses this header to forward a connection to a particular address and
port, allowing the Click element to make the association. From that
point on, traffic flows transparently through the proxy server where
C&C traffic is parsed and rewritten as required. Rules for rewriting
can be installed independently for templates, dictionaries, and e-
mail address target lists. The rewriter logs all C&C traffic between
worker and our proxy bots, between the proxy bots and the master
servers, and all rewriting actions on the traffic.

Since C&C traffic arrives on arbitrary ports, we designed the
proxy server so that it initially handles any type of connection and
falls back to passive pass-through for any non-C&C traffic. Since

the proxy server needs to maintain a connection for each of the
(many) workers, we use a preforked, multithreaded design. A pool
of 30 processes allowed us to handle the full worker load for the
eight Storm proxy bots at all times.

4.2 Measuring spam delivery
To evaluate the effect of spam filtering along the e-mail delivery

path to user inboxes, we established a collection of test e-mail ac-
counts and arranged to have Storm worker bots send spam to those
accounts. We created multiple accounts at three popular free e-mail
providers (Gmail, Yahoo!, and Hotmail), accounts filtered through
our department commercial spam filtering appliance (a Barracuda
Spam Firewall Model 300 with slightly more permissive spam tag-
ging than the default setting), and multiple SMTP “sinks” at dis-
tinct institutions that accept any message sent to them (these served
as “controls” to ensure that spam e-mails were being successfully
delivered, absent any receiver-side spam filtering). When worker
bots request spam workloads, our rewriter appends these e-mail
addresses to the end of each delivery list. When a worker bot re-
ports success or failure back to the master servers, we remove any
success reports for our e-mail addresses to hide our modifications
from the botmaster.

We periodically poll each e-mail account (both inbox and
“junk/spam” folders) for the messages that it received, and we log
them with their timestamps. However, some of the messages we
receive have nothing to do with our study and must be filtered
out. These messages occur for a range of reasons, including spam
generated by “dictionary bots” that exhaustively target potential e-
mail addresses, or because the addresses we use are unintentionally
“leaked” (this can happen when a Storm worker bot connects to
our proxy and then leaves before it has finished sending its spam;
when it reconnects via a new proxy the delivery report to the mas-
ter servers will include our addresses). To filter such e-mail, we
validate that each message includes both a subject line used by our
selected campaigns and contains a link to one of the Web sites un-
der our control.

4.3 Measuring click-through and conversion
To evaluate how often users who receive spam actually visit the

sites advertised requires monitoring the advertised sites themselves.
Since it is generally impractical to monitor sites not under our con-
trol, we have arranged to have a fraction of Storm’s spam advertise
sites of our creation instead.

In particular, we have focused on two types of Storm spam cam-
paigns, a self-propagation campaign designed to spread the Storm
malware (typically under the guise of advertising an electronic
postcard site) and the other advertising a pharmacy site. These are
the two most popular Storm spam campaigns and represent over
40% of recent Storm activity [15].

For each of these campaigns, the Storm master servers distribute
a specific “dictionary” that contains the set of target URLs to be in-
serted into spam e-mails as they are generated by worker bots. To
divert user visits to our sites instead, the rewriter replaces any dic-
tionaries that pass through our proxies with entries only containing
URLs to our Web servers.

In general, we strive for verisimilitude with the actual Storm op-
eration. Thus, we are careful to construct these URLs in the same
manner as the real Storm sites (whether this is raw IP addresses, as
used in the self-propagation campaigns, or the particular “noun-
noun.com” naming schema used by the pharmacy campaign) to
ensure the generated spam is qualitatively indistinguishable from
the “real thing”. An important exception, unique to the pharmacy
campaign, is an identifier we add to the end of each URL by modi-

Spamalytics: An Empirical Analysis of Spam Marketing Conversion
Chris Kanich∗ Christian Kreibich† Kirill Levchenko∗ Brandon Enright∗ Geoffrey M. Voelker∗ Vern Paxson† Stefan
Savage∗

Spam stat

Mar 07 Mar 12 Mar 17 Mar 22 Mar 27 Apr 01 Apr 06 Apr 11 Apr 16
0

0.5

1

1.5

2

2.5

3

Date

E
m

a
ils

 a
s
s
ig

n
e

d
 p

e
r

h
o

u
r

(m
ill

io
n

s
)

Postcard

Pharmacy

April Fool

Figure 4: Number of e-mail messages assigned per hour for
each campaign.

CAMPAIGN DATES WORKERS E-MAILS

Pharmacy Mar 21 – Apr 15 31,348 347,590,389
Postcard Mar 9 – Mar 15 17,639 83,665,479

April Fool Mar 31 – Apr 2 3,678 38,651,124
Total 469,906,992

Table 1: Campaigns used in the experiment.

these IP addresses could not have resulted from spam, and we there-
fore also added them to our crawler blacklist.

It is still possible that some of the accesses were via full-featured,
low-volume honeyclients, but even if these exist we believe they are
unlikely to significantly impact the data.

4.5 Measurement ethics
We have been careful to design experiments that we believe are

both consistent with current U.S. legal doctrine and are fundamen-
tally ethical as well. While it is beyond the scope of this paper to
fully describe the complex legal landscape in which active security
measurements operate, we believe the ethical basis for our work
is far easier to explain: we strictly reduce harm. First, our instru-
mented proxy bots do not create any new harm. That is, absent
our involvement, the same set of users would receive the same set
of spam e-mails sent by the same worker bots. Storm is a large
self-organizing system and when a proxy fails its worker bots au-
tomatically switch to other idle proxies (indeed, when our proxies
fail we see workers quickly switch away). Second, our proxies are
passive actors and do not themselves engage in any behavior that
is intrinsically objectionable; they do not send spam e-mail, they
do not compromise hosts, nor do they even contact worker bots
asynchronously. Indeed, their only function is to provide a conduit
between worker bots making requests and master servers providing
responses. Finally, where we do modify C&C messages in transit,
these actions themselves strictly reduce harm. Users who click on
spam altered by these changes will be directed to one of our innocu-
ous doppelganger Web sites. Unlike the sites normally advertised
by Storm, our sites do not infect users with malware and do not col-
lect user credit card information. Thus, no user should receive more
spam due to our involvement, but some users will receive spam that
is less dangerous that it would otherwise be.

Mar 24 Mar 29 Apr 02 Apr 06 Apr 10 Apr 14
0

100

200

300

400

500

600

Time

N
u
m

b
e
r

o
f
c
o
n
n
e
c
te

d
 w

o
rk

e
rs

Proxy 1

Proxy 2

Proxy 3

Proxy 4

Proxy 5

Proxy 6

Proxy 7

Proxy 8

Figure 5: Timeline of proxy bot workload.

DOMAIN FREQ.
hotmail.com 8.47%

yahoo.com 5.05%
gmail.com 3.17%

aol.com 2.37%
yahoo.co.in 1.13%

sbcglobal.net 0.93%
mail.ru 0.86%

shaw.ca 0.61%
wanadoo.fr 0.61%

msn.com 0.58%
Total 23.79%

Table 2: The 10 most-targeted e-mail address domains and
their frequency in the combined lists of targeted addresses over
all three campaigns.

5. EXPERIMENTAL RESULTS
We now present the overall results of our rewriting experiment.

We first describe the spam workload observed by our C&C rewrit-
ing proxy. We then characterize the effects of filtering on the spam
workload along the delivery path from worker bots to user inboxes,
as well as the number of users who browse the advertised Web sites
and act on the content there.

5.1 Campaign datasets
Our study covers three spam campaigns summarized in Table 1.

The “Pharmacy” campaign is a 26-day sample (19 active days) of
an on-going Storm campaign advertising an on-line pharmacy. The
“Postcard” and “April Fool” campaigns are two distinct and serial
instances of self-propagation campaigns, which attempt to install
an executable on the user’s machine under the guise of being post-
card software. For each campaign, Figure 4 shows the number of
messages per hour assigned to bots for mailing.

Storm’s authors have shown great cunning in exploiting the cul-
tural and social expectations of users — hence the April Fool cam-
paign was rolled out for a limited run around April 1st. Our Web
site was designed to mimic the earlier Postcard campaign and thus
our data probably does not perfectly reflect user behavior for this
campaign, but the two are similar enough in nature that we surmise
that any impact is small.

We began the experiment with 8 proxy bots, of which 7 survived
until the end. One proxy crashed late on March 31. The total num-
ber of worker bots connected to our proxies was 75,869.

Figure 5 shows a timeline of the proxy bot workload. The num-
ber of workers connected to each proxy is roughly uniform across

Spamalytics: An Empirical Analysis of Spam Marketing Conversion
Chris Kanich∗ Christian Kreibich† Kirill Levchenko∗ Brandon Enright∗ Geoffrey M. Voelker∗ Vern Paxson† Stefan
Savage∗

Mar 07 Mar 12 Mar 17 Mar 22 Mar 27 Apr 01 Apr 06 Apr 11 Apr 16
0

0.5

1

1.5

2

2.5

3

Date

E
m

a
ils

 a
s
s
ig

n
e

d
 p

e
r

h
o

u
r

(m
ill

io
n

s
)

Postcard

Pharmacy

April Fool

Figure 4: Number of e-mail messages assigned per hour for
each campaign.

CAMPAIGN DATES WORKERS E-MAILS

Pharmacy Mar 21 – Apr 15 31,348 347,590,389
Postcard Mar 9 – Mar 15 17,639 83,665,479

April Fool Mar 31 – Apr 2 3,678 38,651,124
Total 469,906,992

Table 1: Campaigns used in the experiment.

these IP addresses could not have resulted from spam, and we there-
fore also added them to our crawler blacklist.

It is still possible that some of the accesses were via full-featured,
low-volume honeyclients, but even if these exist we believe they are
unlikely to significantly impact the data.

4.5 Measurement ethics
We have been careful to design experiments that we believe are

both consistent with current U.S. legal doctrine and are fundamen-
tally ethical as well. While it is beyond the scope of this paper to
fully describe the complex legal landscape in which active security
measurements operate, we believe the ethical basis for our work
is far easier to explain: we strictly reduce harm. First, our instru-
mented proxy bots do not create any new harm. That is, absent
our involvement, the same set of users would receive the same set
of spam e-mails sent by the same worker bots. Storm is a large
self-organizing system and when a proxy fails its worker bots au-
tomatically switch to other idle proxies (indeed, when our proxies
fail we see workers quickly switch away). Second, our proxies are
passive actors and do not themselves engage in any behavior that
is intrinsically objectionable; they do not send spam e-mail, they
do not compromise hosts, nor do they even contact worker bots
asynchronously. Indeed, their only function is to provide a conduit
between worker bots making requests and master servers providing
responses. Finally, where we do modify C&C messages in transit,
these actions themselves strictly reduce harm. Users who click on
spam altered by these changes will be directed to one of our innocu-
ous doppelganger Web sites. Unlike the sites normally advertised
by Storm, our sites do not infect users with malware and do not col-
lect user credit card information. Thus, no user should receive more
spam due to our involvement, but some users will receive spam that
is less dangerous that it would otherwise be.

Mar 24 Mar 29 Apr 02 Apr 06 Apr 10 Apr 14
0

100

200

300

400

500

600

Time

N
u
m

b
e
r

o
f
c
o
n
n
e
c
te

d
 w

o
rk

e
rs

Proxy 1

Proxy 2

Proxy 3

Proxy 4

Proxy 5

Proxy 6

Proxy 7

Proxy 8

Figure 5: Timeline of proxy bot workload.

DOMAIN FREQ.
hotmail.com 8.47%

yahoo.com 5.05%
gmail.com 3.17%

aol.com 2.37%
yahoo.co.in 1.13%

sbcglobal.net 0.93%
mail.ru 0.86%

shaw.ca 0.61%
wanadoo.fr 0.61%

msn.com 0.58%
Total 23.79%

Table 2: The 10 most-targeted e-mail address domains and
their frequency in the combined lists of targeted addresses over
all three campaigns.

5. EXPERIMENTAL RESULTS
We now present the overall results of our rewriting experiment.

We first describe the spam workload observed by our C&C rewrit-
ing proxy. We then characterize the effects of filtering on the spam
workload along the delivery path from worker bots to user inboxes,
as well as the number of users who browse the advertised Web sites
and act on the content there.

5.1 Campaign datasets
Our study covers three spam campaigns summarized in Table 1.

The “Pharmacy” campaign is a 26-day sample (19 active days) of
an on-going Storm campaign advertising an on-line pharmacy. The
“Postcard” and “April Fool” campaigns are two distinct and serial
instances of self-propagation campaigns, which attempt to install
an executable on the user’s machine under the guise of being post-
card software. For each campaign, Figure 4 shows the number of
messages per hour assigned to bots for mailing.

Storm’s authors have shown great cunning in exploiting the cul-
tural and social expectations of users — hence the April Fool cam-
paign was rolled out for a limited run around April 1st. Our Web
site was designed to mimic the earlier Postcard campaign and thus
our data probably does not perfectly reflect user behavior for this
campaign, but the two are similar enough in nature that we surmise
that any impact is small.

We began the experiment with 8 proxy bots, of which 7 survived
until the end. One proxy crashed late on March 31. The total num-
ber of worker bots connected to our proxies was 75,869.

Figure 5 shows a timeline of the proxy bot workload. The num-
ber of workers connected to each proxy is roughly uniform across

Spamalytics: An Empirical Analysis of Spam Marketing Conversion
Chris Kanich∗ Christian Kreibich† Kirill Levchenko∗ Brandon Enright∗ Geoffrey M. Voelker∗ Vern Paxson† Stefan
Savage∗

Domain repartionMar 07 Mar 12 Mar 17 Mar 22 Mar 27 Apr 01 Apr 06 Apr 11 Apr 16
0

0.5

1

1.5

2

2.5

3

Date

E
m

a
ils

 a
s
s
ig

n
e
d
 p

e
r

h
o
u
r

(m
ill

io
n
s
)

Postcard

Pharmacy

April Fool

Figure 4: Number of e-mail messages assigned per hour for
each campaign.

CAMPAIGN DATES WORKERS E-MAILS

Pharmacy Mar 21 – Apr 15 31,348 347,590,389
Postcard Mar 9 – Mar 15 17,639 83,665,479

April Fool Mar 31 – Apr 2 3,678 38,651,124
Total 469,906,992

Table 1: Campaigns used in the experiment.

these IP addresses could not have resulted from spam, and we there-
fore also added them to our crawler blacklist.

It is still possible that some of the accesses were via full-featured,
low-volume honeyclients, but even if these exist we believe they are
unlikely to significantly impact the data.

4.5 Measurement ethics
We have been careful to design experiments that we believe are

both consistent with current U.S. legal doctrine and are fundamen-
tally ethical as well. While it is beyond the scope of this paper to
fully describe the complex legal landscape in which active security
measurements operate, we believe the ethical basis for our work
is far easier to explain: we strictly reduce harm. First, our instru-
mented proxy bots do not create any new harm. That is, absent
our involvement, the same set of users would receive the same set
of spam e-mails sent by the same worker bots. Storm is a large
self-organizing system and when a proxy fails its worker bots au-
tomatically switch to other idle proxies (indeed, when our proxies
fail we see workers quickly switch away). Second, our proxies are
passive actors and do not themselves engage in any behavior that
is intrinsically objectionable; they do not send spam e-mail, they
do not compromise hosts, nor do they even contact worker bots
asynchronously. Indeed, their only function is to provide a conduit
between worker bots making requests and master servers providing
responses. Finally, where we do modify C&C messages in transit,
these actions themselves strictly reduce harm. Users who click on
spam altered by these changes will be directed to one of our innocu-
ous doppelganger Web sites. Unlike the sites normally advertised
by Storm, our sites do not infect users with malware and do not col-
lect user credit card information. Thus, no user should receive more
spam due to our involvement, but some users will receive spam that
is less dangerous that it would otherwise be.

Mar 24 Mar 29 Apr 02 Apr 06 Apr 10 Apr 14
0

100

200

300

400

500

600

Time
N

u
m

b
e
r

o
f
c
o
n
n
e
c
te

d
 w

o
rk

e
rs

Proxy 1

Proxy 2

Proxy 3

Proxy 4

Proxy 5

Proxy 6

Proxy 7

Proxy 8

Figure 5: Timeline of proxy bot workload.

DOMAIN FREQ.
hotmail.com 8.47%

yahoo.com 5.05%
gmail.com 3.17%

aol.com 2.37%
yahoo.co.in 1.13%

sbcglobal.net 0.93%
mail.ru 0.86%

shaw.ca 0.61%
wanadoo.fr 0.61%

msn.com 0.58%
Total 23.79%

Table 2: The 10 most-targeted e-mail address domains and
their frequency in the combined lists of targeted addresses over
all three campaigns.

5. EXPERIMENTAL RESULTS
We now present the overall results of our rewriting experiment.

We first describe the spam workload observed by our C&C rewrit-
ing proxy. We then characterize the effects of filtering on the spam
workload along the delivery path from worker bots to user inboxes,
as well as the number of users who browse the advertised Web sites
and act on the content there.

5.1 Campaign datasets
Our study covers three spam campaigns summarized in Table 1.

The “Pharmacy” campaign is a 26-day sample (19 active days) of
an on-going Storm campaign advertising an on-line pharmacy. The
“Postcard” and “April Fool” campaigns are two distinct and serial
instances of self-propagation campaigns, which attempt to install
an executable on the user’s machine under the guise of being post-
card software. For each campaign, Figure 4 shows the number of
messages per hour assigned to bots for mailing.

Storm’s authors have shown great cunning in exploiting the cul-
tural and social expectations of users — hence the April Fool cam-
paign was rolled out for a limited run around April 1st. Our Web
site was designed to mimic the earlier Postcard campaign and thus
our data probably does not perfectly reflect user behavior for this
campaign, but the two are similar enough in nature that we surmise
that any impact is small.

We began the experiment with 8 proxy bots, of which 7 survived
until the end. One proxy crashed late on March 31. The total num-
ber of worker bots connected to our proxies was 75,869.

Figure 5 shows a timeline of the proxy bot workload. The num-
ber of workers connected to each proxy is roughly uniform across

Spamalytics: An Empirical Analysis of Spam Marketing Conversion
Chris Kanich∗ Christian Kreibich† Kirill Levchenko∗ Brandon Enright∗ Geoffrey M. Voelker∗ Vern Paxson† Stefan
Savage∗

Spam pipeline

A B C D E

ta
rg

e
te

d

a
d
d
re

s
s
e
s

email not

delivered

blocked by

spam filter

ignored

by user

user left site

crawler

converter

Figure 6: The spam conversion pipeline.

STAGE PHARMACY POSTCARD APRIL FOOL

A – Spam Targets 347,590,389 100% 83,655,479 100% 40,135,487 100%
B – MTA Delivery (est.) 82,700,000 23.8% 21,100,000 25.2% 10,100,000 25.2%
C – Inbox Delivery — — — — — —
D – User Site Visits 10,522 0.00303% 3,827 0.00457% 2,721 0.00680%
E – User Conversions 28 0.0000081% 316 0.000378% 225 0.000561%

Table 3: Filtering at each stage of the spam conversion pipeline for the self-propagation and pharmacy campaigns. Percentages refer
to the conversion rate relative to Stage A.

all proxies (23 worker bots on average), but shows strong spikes
corresponding to new self-propagation campaigns. At peak, 539
worker bots were connected to our proxies at the same time.

Most workers only connected to our proxies once: 78% of the
workers only connected to our proxies a single time, 92% at most
twice, and 99% at most five times. The most prolific worker IP
address, a host in an academic network in North Carolina, USA,
contacted our proxies 269 times; further inspection identified this
as a NAT egress point for 19 individual infections. Conversely,
most workers do not connect to more than one proxy: 81% of the
workers only connected to a single proxy, 12% to two, 3% to four,
4% connected to five or more, and 90 worker bots connected to all
of our proxies. On average, worker bots remained connected for
40 minutes, although over 40% workers connected for less than a
minute. The longest connection lasted almost 81 hours.

The workers were instructed to send postcard spam to a to-
tal of 83,665,479 addresses, of which 74,901,820 (89.53%) are
unique. The April Fool campaign targeted 38,651,124 addresses,
of which 36,909,792 (95.49%) are unique. Pharmacy spam tar-
geted 347,590,389 addresses, of which 213,761,147 (61.50%) are
unique. Table 2 shows the 15 most frequently targeted domains
of the three campaigns. The individual campaign distributions are
identical in ordering and to a precision of one tenth of a percentage,
therefore we only show the aggregate breakdown.

5.2 Spam conversion pipeline
Conceptually, we break down spam conversion into a pipeline

with five “filtering” stages in a manner similar to that described by
Aycock and Friess [6]. Figure 6 illustrates this pipeline and shows
the type of filtering at each stage. The pipeline starts with delivery
lists of target e-mail addresses sent to worker bots (Stage A). For
a wide range of reasons (e.g., the target address is invalid, MTAs
refuse delivery because of blacklists, etc.), workers will success-
fully deliver only a subset of their messages to an MTA (Stage B).

SPAM FILTER PHARMACY POSTCARD APRIL FOOL
Gmail 0.00683% 0.00176% 0.00226%
Yahoo 0.00173% 0.000542% none

Hotmail none none none
Barracuda 0.131% N/A 0.00826%

Table 4: Number of messages delivered to a user’s inbox as
a fraction of those injected for test accounts at free e-mail
providers and a commercial spam filtering appliance. The test
account for the Barracuda appliance was not included in the
Postcard campaign.

At this point, spam filters at the site correctly identify many mes-
sages as spam, and drop them or place them aside in a spam folder.
The remaining messages have survived the gauntlet and appear in
a user’s inbox as valid messages (Stage C). Users may delete or
otherwise ignore them, but some users will act on the spam, click
on the URL in the message, and visit the advertised site (Stage D).
These users may browse the site, but only a fraction “convert” on
the spam (Stage E) by attempting to purchase products (pharmacy)
or by downloading and running an executable (self-propagation).

We show the spam flow in two parts, “crawler” and “converter”,
to differentiate between real and masquerading users (Section 4.4).
For example, the delivery lists given to workers contain honeypot
e-mail addresses. Workers deliver spam to these honeypots, which
then use crawlers to access the sites referenced by the URL in the
messages (e.g., our own Spamscatter project [3]). Since we want
to measure the spam conversion rate for actual users, we separate
out the effects of automated processes like crawlers — a necessary
aspect of studying an artifact that is also being actively studied by
other groups [12].

Table 3 shows the effects of filtering at each stage of the con-
version pipeline for both the self-propagation and pharmaceutical
campaigns. The number of targeted addresses (A) is simply the to-

Spamalytics: An Empirical Analysis of Spam Marketing Conversion
Chris Kanich∗ Christian Kreibich† Kirill Levchenko∗ Brandon Enright∗ Geoffrey M. Voelker∗ Vern Paxson† Stefan
Savage∗

Percentage

A B C D E

ta
rg

e
te

d

a
d
d
re

s
s
e
s

email not

delivered

blocked by

spam filter

ignored

by user

user left site

crawler

converter

Figure 6: The spam conversion pipeline.

STAGE PHARMACY POSTCARD APRIL FOOL

A – Spam Targets 347,590,389 100% 83,655,479 100% 40,135,487 100%
B – MTA Delivery (est.) 82,700,000 23.8% 21,100,000 25.2% 10,100,000 25.2%
C – Inbox Delivery — — — — — —
D – User Site Visits 10,522 0.00303% 3,827 0.00457% 2,721 0.00680%
E – User Conversions 28 0.0000081% 316 0.000378% 225 0.000561%

Table 3: Filtering at each stage of the spam conversion pipeline for the self-propagation and pharmacy campaigns. Percentages refer
to the conversion rate relative to Stage A.

all proxies (23 worker bots on average), but shows strong spikes
corresponding to new self-propagation campaigns. At peak, 539
worker bots were connected to our proxies at the same time.

Most workers only connected to our proxies once: 78% of the
workers only connected to our proxies a single time, 92% at most
twice, and 99% at most five times. The most prolific worker IP
address, a host in an academic network in North Carolina, USA,
contacted our proxies 269 times; further inspection identified this
as a NAT egress point for 19 individual infections. Conversely,
most workers do not connect to more than one proxy: 81% of the
workers only connected to a single proxy, 12% to two, 3% to four,
4% connected to five or more, and 90 worker bots connected to all
of our proxies. On average, worker bots remained connected for
40 minutes, although over 40% workers connected for less than a
minute. The longest connection lasted almost 81 hours.

The workers were instructed to send postcard spam to a to-
tal of 83,665,479 addresses, of which 74,901,820 (89.53%) are
unique. The April Fool campaign targeted 38,651,124 addresses,
of which 36,909,792 (95.49%) are unique. Pharmacy spam tar-
geted 347,590,389 addresses, of which 213,761,147 (61.50%) are
unique. Table 2 shows the 15 most frequently targeted domains
of the three campaigns. The individual campaign distributions are
identical in ordering and to a precision of one tenth of a percentage,
therefore we only show the aggregate breakdown.

5.2 Spam conversion pipeline
Conceptually, we break down spam conversion into a pipeline

with five “filtering” stages in a manner similar to that described by
Aycock and Friess [6]. Figure 6 illustrates this pipeline and shows
the type of filtering at each stage. The pipeline starts with delivery
lists of target e-mail addresses sent to worker bots (Stage A). For
a wide range of reasons (e.g., the target address is invalid, MTAs
refuse delivery because of blacklists, etc.), workers will success-
fully deliver only a subset of their messages to an MTA (Stage B).

SPAM FILTER PHARMACY POSTCARD APRIL FOOL
Gmail 0.00683% 0.00176% 0.00226%
Yahoo 0.00173% 0.000542% none

Hotmail none none none
Barracuda 0.131% N/A 0.00826%

Table 4: Number of messages delivered to a user’s inbox as
a fraction of those injected for test accounts at free e-mail
providers and a commercial spam filtering appliance. The test
account for the Barracuda appliance was not included in the
Postcard campaign.

At this point, spam filters at the site correctly identify many mes-
sages as spam, and drop them or place them aside in a spam folder.
The remaining messages have survived the gauntlet and appear in
a user’s inbox as valid messages (Stage C). Users may delete or
otherwise ignore them, but some users will act on the spam, click
on the URL in the message, and visit the advertised site (Stage D).
These users may browse the site, but only a fraction “convert” on
the spam (Stage E) by attempting to purchase products (pharmacy)
or by downloading and running an executable (self-propagation).

We show the spam flow in two parts, “crawler” and “converter”,
to differentiate between real and masquerading users (Section 4.4).
For example, the delivery lists given to workers contain honeypot
e-mail addresses. Workers deliver spam to these honeypots, which
then use crawlers to access the sites referenced by the URL in the
messages (e.g., our own Spamscatter project [3]). Since we want
to measure the spam conversion rate for actual users, we separate
out the effects of automated processes like crawlers — a necessary
aspect of studying an artifact that is also being actively studied by
other groups [12].

Table 3 shows the effects of filtering at each stage of the con-
version pipeline for both the self-propagation and pharmaceutical
campaigns. The number of targeted addresses (A) is simply the to-

Spamalytics: An Empirical Analysis of Spam Marketing Conversion
Chris Kanich∗ Christian Kreibich† Kirill Levchenko∗ Brandon Enright∗ Geoffrey M. Voelker∗ Vern Paxson† Stefan
Savage∗

Click response time

tal number of addresses on the delivery lists received by the worker
bots during the measurement period, excluding the test addresses
we injected.

We obtain the number of messages delivered to an MTA (B)
by relying on delivery reports generated by the workers. Unfor-
tunately, an exact count of successfully delivered messages is not
possible because workers frequently change proxies or go offline,
causing both extraneous (resulting from a previous, non-interposed
proxy session) and missing delivery reports. We can, however, es-
timate the aggregate delivery ratio (B/A) for each campaign using
the success ratio of all observed delivery reports. This ratio allows
us to then estimate the number of messages delivered to the MTA
and even to do so on a per-domain basis.

The number of messages delivered to a user’s inbox (C) is a
much harder value to estimate. We do not know what spam fil-
tering, if any, is used by each mail provider, and then by each user
individually, and therefore cannot reasonably estimate this number
in total. It is possible, however, to determine this number for in-
dividual mail providers or spam filters. The three mail providers
and the spam filtering appliance we used in this experiment had a
method for separating delivered mails into “junk” and inbox cat-
egories. Table 4 gives the number of messages delivered a user’s
inbox for the free e-mail providers, which together accounted for
about 16.5% of addresses targeted by Storm (Table 2), as well as
our department’s commercial spam filtering appliance. It is impor-
tant to note that these are results from one spam campaign over a
short period of time and should not be used as measures of the rel-
ative effectiveness for each service. That said, we observe that the
popular Web mail providers all do a very a good job at filtering the
campaigns we observed, although it is clear they use different meth-
ods to get there (for example, Hotmail rejects most Storm spam at
the MTA-level, while Gmail accepts a significant fraction only to
filter it later as junk).

The number of visits (D) is the number of accesses to our em-
ulated pharmacy and postcard sites, excluding any crawlers as de-
termined using the methods outlined in Section 4.2. We note that
crawler requests came from a small fraction of hosts but accounted
for the majority of all requests to our Web sites. For the pharmacy
site, for instance, of the 11,720 unique IP addresses seen accessing
the site with a valid unique identifier, only 10.2% were blacklisted
as crawlers. In contrast, 55.3% of all unique identifiers used in re-
quests originated from these crawlers. For all non-image requests
made to the site, 87.43% were made by blacklisted IP addresses.

The number of conversions (E) is the number of visits to the
purchase page of the pharmacy site, or the number of executions of
the fake self-propagation program.

Our results for Storm spam campaigns show that the spam con-
version rate is quite low. For example, out of 350 million pharmacy
campaign e-mails only 28 conversions resulted (and no crawler ever
completed a purchase so errors in crawler filtering plays no role).
However, a very low conversion rate does not necessary imply low
revenue or profitability. We discuss the implications of the conver-
sion rate on the spam conversion proposition further in Section 8.

5.3 Time to click
The conversion pipeline shows what fraction of spam ultimately

resulted visits to the advertised sites. However, it does not re-
flect the latency between when the spam was sent and when a user
clicked on it. The longer it takes users to act, the longer the scam
hosting infrastructure will need to remain available to extract rev-
enue from the spam [3]. Put another way, how long does a spam-
advertised site need to be available to collect its potential revenue?

1s 10s 1min 10min 1h 6h 1d 1w 1m
0

0.2

0.4

0.6

0.8

1

Time to click

F
ra

c
ti
o
n
 o

f
c
li
c
k
s

Crawlers

Users

Converters

Figure 7: Time-to-click distributions for accesses to the phar-
macy site.

Figure 7 shows the cumulative distribution of the “time-to-click”
for accesses to the pharmacy site. The time-to-click is the time
from when spam is sent (when a proxy forwards a spam workload
to a worker bot) to when a user “clicks” on the URL in the spam
(when a host first accesses the Web site). The graph shows three
distributions for the accesses by all users, the users who visited the
purchase page (“converters”), and the automated crawlers (14,716
such accesses). Note that we focus on the pharmacy site since,
absent a unique identifier, we do not have a mechanism to link visits
to the self-propagation site to specific spam messages and their time
of delivery.

The user and crawler distributions show distinctly different be-
havior. Almost 30% of the crawler accesses are within 20 sec-
onds of worker bots sending spam. This behavior suggests that
these crawlers are configured to scan sites advertised in spam im-
mediately upon delivery. Another 10% of crawler accesses have
a time-to-click of 1 day, suggesting crawlers configured to access
spam-advertised sites periodically in batches. In contrast, only 10%
of the user population accesses spam URLs immediately, and the
remaining distribution is smooth without any distinct modes. The
distributions for all users and users who “convert” are roughly simi-
lar, suggesting little correlation between time-to-click and whether
a user visiting a site will convert. While most user visits occur
within the first 24 hours, 10% of times-to-click are a week to a
month, indicating that advertised sites need to be available for long
durations to capture full revenue potential.

6. EFFECTS OF BLACKLISTING
A major effect on the efficacy of spam delivery is the employ-

ment by numerous ISPs of address-based blacklisting to reject e-
mail from hosts previously reported as sourcing spam. To assess
the impact of blacklisting, during the course of our experiments
we monitored the Composite Blocking List (CBL) [1], a blacklist
source used by the operators of some of our institutions. At any
given time the CBL lists on the order of 4–6 million IP addresses
that have sent e-mail to various spamtraps. We were able to monitor
the CBL from March 21 – April 2, 2008, from the start of the Phar-
macy campaign until the end of the April Fool campaign. Although
the monitoring does not cover the full extent of all campaigns, we
believe our results to be representative of the effects of CBL during
the time frame of our experiments.

Spamalytics: An Empirical Analysis of Spam Marketing Conversion
Chris Kanich∗ Christian Kreibich† Kirill Levchenko∗ Brandon Enright∗ Geoffrey M. Voelker∗ Vern Paxson† Stefan
Savage∗

Geographic Repartition

Figure 9: Geographic locations of the hosts that “convert” on spam: the 541 hosts that execute the emulated self-propagation
program (light grey), and the 28 hosts that visit the purchase page of the emulated pharmacy site (black).

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Delivery Rate Prior to Blacklisting

D
e
liv

e
ry

 R
a
te

 P
o
s
t
B

la
c
k
lis

ti
n
g

!

!

!

!

!

!

!

!

!

!

!

!

!!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!
!

!

!

!

!

!

!

!

!

! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

! !!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!
!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!!

!

!

!

!

!

!

!

!

! !!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!
!

!

!

!

!

!

!

!

!

!

!

!

! !

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

! !

!

!

!

!

!

!

!

!

!

!

! !

!

!

!

!

!

!!!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!!

!

!

!
!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!!!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!!

!

!!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

! !

!

!

!

!

!

!

!

!!
!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

! !

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

! !

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

! !

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!!
! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!
!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!!

!!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!!

!

!

!

!

! !

!

!

!

!

!!
!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

! !

!

!

!

!

!

!

!

!!

!

!!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!! !

!

! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

! !

!

!

!!

!

!

!

!

!

! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!!!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!
!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!!

!

!

!

!

!

!

!

!

!

!

! !

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

! !! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!
!

!

!

!

!

!

!

!!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

! !

!!
!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

! !

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

! !!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!!

!!

!

!

!

!
!

!
!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

! !

!

!

!

!

!

!!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

! !!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

! !

!

!

!

! !

!

!

!

!

!

!

!

! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

! !

!

!

!

!

! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!
!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!
!

!

!!!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!!
!!

!

!

!

!

!

!

!

!

!

!

!

! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!!
! !

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
! !

!

!!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!!!

!

!

!

!

!

!

!

!

!

!!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!!!

!

!!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!!!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!!
!

!!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!! !!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

! !

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

! !

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!!!

!

!

!

!

!

!

!

!!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

! !

!

!!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

! !

!

!

!

!

!

!

!

!

!

!

! !!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!! !

!

!

!

!!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

! !

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!
!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

! !

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!!
!

!

!

!

!

!!
!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

! !

!

!

!

!

!!
!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

! !

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

! !

!

!

!

!

!!

!

!

!

!

!

!
!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!
! !

!

!

!

!

!

!!

!

!

!

!!!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!!!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!!

!!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

! !

!

! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

! !
!

!

!

!

!

!!

!

!

!

!

!

!

! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

! !

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!
!

!

!

!

!

!

!

!

!

!

!

!

!

! ! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!
!

!
!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!!

!

! !

!

!

!

!!

!

!

!

!!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!! !
!!

!

!

!

!

!

! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

! !

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

! !

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

! !

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!
!

! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

! !

!

!

!

!!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

! !

!

!

!

!

!

!

!

!

!

!

! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

! !

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

! !

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!
! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

! !

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

Figure 8: Change in per-domain delivery rates as seen prior
to a worker bot appearing in the blacklist (x-axis) vs. after ap-
pearing (y-axis). Each circle represents a domain targeted by
at least 1,000 analyzable deliveries, with the radius scaled in
proportion to the number of delivery attempts.

We downloaded the current CBL blacklist every half hour, en-
abling us to determine which worker bots in our measurements
were present on the list and how their arrival on the list related
to their botnet activity. Of 40,864 workers that sent delivery re-
ports, fully 81% appeared on the CBL. Of those appearing at some
point on the list, 77% were on the list prior to our observing their
receipt of spamming directives, appearing first on the list 4.4 days
(median) earlier. Of those not initially listed but then listed sub-
sequently, the median interval until listing was 1.5 hours, strongly
suggesting that the spamming activity we observed them being in-
structed to conduct quickly led to their detection and blacklisting.

Of hosts never appearing on the list, more than 75% never reported
successful delivery of spam, indicating that the reason for their lack
of listing was simply their inability to effectively annoy anyone.

One confounding factor is that the CBL exhibits considerable
flux once an address first appears on the blacklist: the worker
bots typically (median) experience 5 cycles of listing-followed-by-
delisting. Much of this churn comes from a few periods of massive
delistings, which appear to be glitches in maintenance (or propa-
gation) of the blacklist rather than a response to external events.
(If delistings arose due to botmasters using the delisting process to
render their workers more effective for a while, then it might be
possible to monitor the delisting process in order to conduct botnet
counterintelligence, similar to that developed previously for black-
listing lookups [18].) Due to caching of blacklist entries by sites,
we thus face ambiguity regarding whether a given worker is viewed
as blacklisted at a given time. For our preliminary analysis, we sim-
ply consider a worker as blacklisted from the point where it first
appears on the CBL onwards.

We would expect that the impact of blacklisting on spam delivery
strongly depends on the domain targeted in a given e-mail, since
some domains incorporate blacklist feeds such as the CBL into
their mailer operations and others do not. To explore this effect,
Figure 8 plots the per-domain delivery rate: the number of spam e-
mails that workers reported as successfully delivered to the domain
divided by number attempted to that domain. The x-axis shows the
delivery rate for spams sent by a worker prior to its appearance in
the CBL, and the y-axis shows the rate after its appearance in the
CBL. We limit the plot to the 10,879 domains to which workers at-
tempted to deliver at least 1,000 spams. We plot delivery rates for
the two different campaigns as separate circles, though the over-
all nature of the plot does not change between them. The radius of
each plotted circle scales in proportion to the number of delivery at-
tempts, the largest corresponding to domains such as hotmail.com,
yahoo.com, and gmail.com.

From the plot we clearly see a range of blacklisting behavior by
different domains. Some employ other effective anti-spam filtering,
indicated by their appearance near the origin — spam did not get
through even prior to appearing on the CBL blacklist. Some make
heavy use of either the CBL or a similar list (y-axis near zero, but

Spamalytics: An Empirical Analysis of Spam Marketing Conversion
Chris Kanich∗ Christian Kreibich† Kirill Levchenko∗ Brandon Enright∗ Geoffrey M. Voelker∗ Vern Paxson† Stefan
Savage∗

