Network Security Protocols and Defensive Mechanisms

John Mitchell

Plan for today

- Network protocol security
 - Wireless access— 802.11i/WPA2
 - IPSEC
 - BGP instability and S-BGP
 - DNS rebinding and DNSSEC
- Standard network defenses
 - Firewall
 - Packet filter (stateless, stateful), Application layer proxies
 - Intrusion detection
 - Anomaly and misuse detection

@ art.com

Last lecture

- Basic network protocols
 - IP, TCP, UDP, BGP, DNS
- Problems with them
 - TCP/IP
 - No SRC authentication: can't tell where packet is from
 - Packet sniffing
 - Connection spoofing, sequence numbers
 - BGP: advertise bad routes or close good ones
 - DNS: cache poisoning, rebinding
 - Web security mechanisms rely on DNS

Network Protocol Stack

IKE subprotocol from IPSEC

Result: A and B share secret g^{ab} mod p

Link-layer connectivity

Link Layer

802.11i Protocol

Supplicant

Auth/Assoc 802.1X UnBlocked PTK/GTK

Authenticator

Auth/Assoc 802.1X UnBlocked PTK/GTK Authentic
a-tion
Server
(RADIUS)
No Key

MSK

802.11 Association

EAP/802.1X/RADIUS Authentication

4-Way Handshake

Group Key Handshake

Data Communication

TCP/IP connectivity

Transport layer security (from last lecture)

Basic Layer 2-3 Security Problems

- Network packets pass by untrusted hosts
 - Eavesdropping, packet sniffing
 - Especially easy when attacker controls a machine close to victim

- TCP state can be easy to guess
 - Enables spoofing and session hijacking

Virtual Private Network (VPN)

- Three different modes of use:
 - Remote access client connections
 - LAN-to-LAN internetworking
 - Controlled access within an intranet
- Several different protocols
 - PPTP Point-to-point tunneling protocol
 - L2TP Layer-2 tunneling protocol
 - IPsec (Layer-3: network layer)

Data layer

IPSEC

- Security extensions for IPv4 and IPv6
- ◆ IP Authentication Header (AH)
 - Authentication and integrity of payload and header
- ◆ IP Encapsulating Security Protocol (ESP)
 - Confidentiality of payload
- ESP with optional ICV (integrity check value)
 - Confidentiality, authentication and integrity of payload

Recall packet formats and layers

IPSec Transport Mode: IPSEC instead of IP header

IPSEC Tunnel Mode

IPSec Tunnel Mode: IPSEC header + IP header

IKE subprotocol from IPSEC

Result: A and B share secret g^{ab} mod p

Mobile IPv6 Architecture

Filtering network traffic (starting at IP, transport layer ...)

Basic Firewall Concept

Separate local area net from internet

All packets between LAN and internet routed through firewall

Screened Subnet Using Two Routers

Alternate 1: Dual-Homed Host

Alternate 2: Screened Host

Basic Packet Filtering

- Uses transport-layer information only
 - IP Source Address, Destination Address
 - Protocol (TCP, UDP, ICMP, etc)
 - TCP or UDP source & destination ports
 - TCP Flags (SYN, ACK, FIN, RST, PSH, etc)
 - ICMP message type
- Examples
 - DNS uses port 53
 - Block incoming port 53 packets except known trusted servers
- Issues
 - Stateful filtering
 - Encapsulation: address translation, other complications
 - Fragmentation

Source/Destination Address Forgery

More about networking: port numbering

- TCP connection
 - Server port uses number less than 1024
 - Client port uses number between 1024 and 16383
- Permanent assignment
 - Ports <1024 assigned permanently

• 20,21 for FTP

23 for Telnet

25 for server SMTP
 80 for HTTP

Variable use

- Ports >1024 must be available for client to make connection
- Limitation for stateless packet filtering
 - If client wants port 2048, firewall must allow incoming traffic
- Better: stateful filtering knows outgoing requests
 - Only allow incoming traffic on high port to a machine that has initiated an outgoing request on low port

Filtering Example: Inbound SMTP

Can block external request to internal server based on port number

Filtering Example: Outbound SMTP

Known low port out, arbitrary high port in

If firewall blocks incoming port 1357 traffic then connection fails

Stateful or Dynamic Packet Filtering

Telnet

Stateful filtering can use this pattern to identify legitimate sessions

FTP

- Server acknowledges
- Server opens data channel to client's second port
- Client acknowledges

Complication for firewalls

Normal IP Fragmentation

Flags and offset inside IP header indicate packet fragmentation

Abnormal Fragmentation

Low offset allows second packet to overwrite TCP header at receiving host

Packet Fragmentation Attack

- Firewall configuration
 - TCP port 23 is blocked but SMTP port 25 is allowed
- First packet
 - Fragmentation Offset = 0.
 - DF bit = 0 : "May Fragment"
 - MF bit = 1 : "More Fragments"
 - Destination Port = 25. TCP port 25 is allowed, so firewall allows packet
- Second packet
 - Fragmentation Offset = 1: second packet overwrites all but first 8 bits of the first packet
 - DF bit = 0 : "May Fragment"
 - MF bit = 0 : "Last Fragment."
 - Destination Port = 23. Normally be blocked, but sneaks by!
- What happens
 - Firewall ignores second packet "TCP header" because it is fragment of first
 - At host, packet reassembled and received at port 23

TCP Protocol Stack

Remember SSL/TLS

Proxying Firewall

- Application-level proxies
 - Tailored to http, ftp, smtp, etc.
 - Some protocols easier to proxy than others
- Policy embedded in proxy programs
 - Proxies filter incoming, outgoing packets
 - Reconstruct application-layer messages
 - Can filter specific application-layer commands, etc.
 - Example: only allow specific ftp commands
 - Other examples: ?
- Several network locations see next slides

Firewall with application proxies

Daemon spawns proxy when communication detected ...

Application-level proxies

- Enforce policy for specific protocols
 - E.g., Virus scanning for SMTP
 - Need to understand MIME, encoding, Zip archives
 - Flexible approach, but may introduce network delays
- "Batch" protocols are natural to proxy
 - SMTP (E-Mail)NNTP (Net news)
 - DNS (Domain Name System) NTP (Network Time Protocol
- Must protect host running protocol stack
 - Disable all non-required services; keep it simple
 - Install/modify services you want
 - Run security audit to establish baseline
 - Be prepared for the system to be compromised

Web traffic scanning

- Intercept and proxy web traffic
 - Can be host-based
 - Usually at enterprise gateway
- Block known bad sites
- Block pages with known attacks
- Scan attachments
 - Usually traditional virus scanning methods

Firewall references

Simon Cooper
D. Brent Chapman

Firewalls and Internet Security Second Edition

Repelling the Wily Hacker

William R. Cheswick Steven M. Bellovin Aviel D. Rubin

William R Cheswick
Steven M Bellovin
Aviel D Rubin

★ ADDISON-WESLEY PROFESSIONAL COMPUTING SERIES

TCP Protocol Stack

- Infrastructure protocols
 - BGP
 - DNS

Intrusion detection

- Many intrusion detection systems
 - Close to 100 systems with current web pages
 - Network-based, host-based, or combination
- Two basic models
 - Misuse detection model
 - Maintain data on known attacks
 - Look for activity with corresponding signatures
 - Anomaly detection model
 - Try to figure out what is "normal"
 - Report anomalous behavior
- Fundamental problem: too many false alarms

Example: Snort

http://www.snort.org/

From: Rafeeq Ur Rehman, Intrusion Detection Systems with Snort: Advanced IDS Techniques with Snort, Apache, MySQL, PHP, and ACID.

Snort components

- Packet Decoder
 - input from Ethernet, SLIP, PPP...
- Preprocessor:
 - detect anomalies in packet headers
 - packet defragmentation
 - decode HTTP URI
 - reassemble TCP streams
- Detection Engine: applies rules to packets
- Logging and Alerting System
- Output Modules: alerts, log, other output

Snort detection rules

Additional examples


```
alert tcp $TELNET_SERVERS 23 -> $EXTERNAL_NET any (msg: "TELNET
   Attempted SU from wrong group"; flow:
from_server,established; content: "to su root"; nocase;
   classtype:attempted-admin; sid:715; rev:6;)
```

Snort challenges

- Misuse detection avoid known intrusions
 - Database size continues to grow
 - Snort version 2.3.2 had 2,600 rules
 - Snort spends 80% of time doing string match
- Anomaly detection identify new attacks
 - Probability of detection is low

Difficulties in anomaly detection

- Lack of training data
 - Lots of "normal" network, system call data
 - Little data containing realistic attacks, anomalies
- Data drift
 - Statistical methods detect changes in behavior
 - Attacker can attack gradually and incrementally
- Main characteristics not well understood
 - By many measures, attack may be within bounds of "normal" range of activities
- False identifications are very costly
 - Sys Admin spend many hours examining evidence

INFRASTRUCTURE PROTOCOLS: BGP, DNS

BGP example

- Transit: 2 provides transit for 7
- Algorithm seems to work OK in practice
 - BGP is does not respond well to frequent node outages

BGP Security Issues

- BGP is used for all inter-ISP routing
- Benign configuration errors affect about 1% of all routing table entries at any time
- Highly vulnerable to human errors, malicious attacks
 - Actual routing policies can be very complicated
- MD5 MAC is rarely used, perhaps due to lack of automated key management, addresses only one class of attacks

S-BGP Design Overview

- ◆ IPsec: secure point-to-point router communication
- Public Key Infrastructure: authorization for all S-BGP entities
- Attestations: digitally-signed authorizations
 - Address: authorization to advertise specified address blocks
 - Route: Validation of UPDATEs based on a new path attribute, using PKI certificates and attestations
- Repositories for distribution of certificates, CRLs, and address attestations
- Tools for ISPs to manage address attestations, process certificates & CRLs, etc.

Slide: Steve Kent

BGP example

Address Attestation

- Indicates that the final AS listed in the UPDATE is authorized by the owner of those address blocks to advertise the address blocks in the UPDATE
- Includes identification of:
 - owner's certificate
 - AS to be advertising the address blocks
 - address blocks
 - expiration date
- Digitally signed by owner of the address blocks
- Used to protect BGP from erroneous UPDATEs
 (authenticated but misbehaving or misconfigured BGP speakers)

Route Attestation

- Indicates that the speaker or its AS authorizes the listener's AS to use the route in the UPDATE
- Includes identification of:
 - AS's or BGP speaker's certificate issued by owner of the AS
 - the address blocks and the list of ASes in the UPDATE
 - the neighbor
 - expiration date
- Digitally signed by owner of the AS (or BGP speaker) distributing the UPDATE, traceable to the IANA ...
- Used to protect BGP from erroneous UPDATEs
 (authenticated but misbehaving or misconfigured BGP speakers)

Validating a Route

- \bullet To validate a route from AS_n, AS_{n+1} needs:
 - address attestation from each organization owning an address block(s) in the NLRI
 - address allocation certificate from each organization owning address blocks in the NLRI
 - route attestation from every AS along the path (AS₁ to AS_n), where the route attestation for AS_k specifies the NLRI and the path up to that point (AS₁ through AS_{k+1})
 - certificate for each AS or router along path (AS₁ to AS_n) to check signatures on the route attestations
 - and, of course, all the relevant CRLs must have been checked

Slide: Kent et al.

INFRASTRUCTURE PROTOCOLS: BGP, DNS

Recall: DNS Lookup

Query: "www.example.com A?"

Reply	Resource Records in Reply
3	"com. NS a.gtld.net" "a.gtld.net A 192.5.6.30"
5	"example.com. NS a.iana.net" "a.iana.net A 192.0.34.43"
7	"www.example.com A 1.2.3.4"
8	"www.example.com A 1.2.3.4"

Local recursive resolver caches these for TTL specified by RR

DNS is Insecure

- ◆ Packets sent over UDP, < 512 bytes</p>
- ◆ 16-bit TXID, UDP Src port are only "security"
- Resolver accepts packet if above match
- Packet from whom? Was it manipulated?
- Cache poisoning
 - Attacker forges record at resolver
 - Forged record cached, attacks future lookups
 - Kaminsky (BH USA08)
 - Attacks delegations with "birthday problem"

DNSSEC Goal

"The Domain Name System (DNS) security extensions provide origin authentication and integrity assurance services for DNS data, including mechanisms for authenticated denial of existence of DNS data."

-RFC 4033

DNSSEC

- Basically no change to packet format
 - Goal is security of DNS data, not channel security
- New Resource Records (RRs)
 - RRSIG: signature of RR by private zone key
 - DNSKEY: public zone key
 - DS: crypto digest of child zone key
 - NSEC / NSEC3 authenticated denial of existence
- Lookup referral chain (unsigned)
- Origin attestation chain (PKI) (signed)
 - Start at pre-configured trust anchors
 - DS/DNSKEY of zone (should include root)
 - DS → DNSKEY → DS forms a link

DNSSEC Lookup

Query: "www.example.com A?"

Reply	RRs in DNS Reply	Added by DNSSEC
3	"com. NS a.gtld.net" "a.gtld.net A 192.5.6.30"	"com. DS" "RRSIG(DS) by ."
5	"example.com. NS a.iana.net" "a.iana.net A 192.0.34.43"	"com. DNSKEY" "RRSIG(DNSKEY) by com." "example.com. DS" "RRSIG(DS) by com."
7	"www.example.com A 1.2.3.4"	"example.com DNSKEY" "RRSIG(DNSKEY) by example.com." "RRSIG(A) by example.com."
8	"www.example.com A 1.2.3.4"	Last Hop?

Authenticated Denial-of-Existence

- Most DNS lookups result in denial-of-existence
- NSEC (Next SECure)
 - Lists all extant RRs associated with an owner name
 - Points to next owner name with extant RR
 - Easy zone enumeration
- NSEC3
 - Hashes owner names
 - Public salt to prevent pre-computed dictionaries
 - NSEC3 chain in hashed order
 - Opt-out bit for TLDs to support incremental adoption
 - For TLD type zones to support incremental adoption
 - Non-DNSSEC children not in NSEC3 chain

Insecure Sub-Namespace

- NSEC3 Opt-out
 - "Does not assert the existence or non-existence of the insecure delegations that it may cover" (RFC 5155)
 - Only thing asserting this is insecure glue records
- Property: Possible to insert bogus pre-pended name into otherwise secure zone. (RFC 5155)
- Insecure delegation from secure zone
 - Spoofs possible for resultant lookup results
- Acceptable for TLD, bad for enterprises

[DWF'96, R'01]

DNS Rebinding Attack

66

DNS Rebinding Defenses

- Browser mitigation: DNS Pinning
 - Refuse to switch to a new IP
 - Interacts poorly with proxies, VPN, dynamic DNS, ...
 - Not consistently implemented in any browser
- Server-side defenses
 - Check Host header for unrecognized domains
 - Authenticate users with something other than IP
- Firewall defenses
 - External names can't resolve to internal addresses
 - Protects browsers inside the organization

Summary

- Network protocol security
 - Wireless security 802.11i/WPA2
 - IPSEC
 - BGP instability and S-BGP
 - DNSSEC, DNS rebinding
- Standard network perimeter defenses
 - Firewall
 - Packet filter (stateless, stateful), Application layer proxies
 - Traffic shaping
 - Intrusion detection
 - Anomaly and misuse detection

