CS 155 Spring 2016

Program Analysis for Security

John Mitchell

MOTIVATION FOR
PROGRAM ANALYZERS

Software bugs are serious problems

W 07-31-2010, 12:57 PM

911crashes

Junior Member

ﬁﬂﬂ

W

Join Date: Jul 2010
Posts: 2

[OFFLINE

@ calling 911 crashes my HTC evo 4G, every time
I happen to need to call 911 one night, found that my phone crashes every time I dial 911.
my wife's phone does not do that, any thought?

by the way, it is hard to test this problem due to the sensitivity of calling 911 repeatedly.
thanks,

heartboken

Thanks: Isil and Thomas Dillig

Facebook missed a
single secum

Man Finds Easy Hack to Delete Any
Facebook Photo Album

__; Facebook awards him a $12,500 "bug bounty" for his discovery

App stores

Apps for whatever you're up for.

Stay on top of the news. Stay on top of your finances. Or plan your dream vacation. No matter

what you want to do with your iPhone, there’s probably an app to help you do it.

m Business

iPhone is ready for work. Manage
projects, track stocks, monitor
finances, and more with these 9-to-
5apps.

View business apps
in the App Store >

E' Family &Kids

Turn every night into family night with

interactive apps thatare fun for the
whole house.

View family and kids apps
in the App Store >

G Education

Keep up with your studies using
intelligent education apps like King of
Math and NatureTap.

View education apps
in the App Store >

e .
M Finance

Create budgets, pay bills,and more
with financial apps that take
everything into account.

View finance apps
in the App Store >

HB®

Entertainment

Kick back and enjoy the show. Or find
countless other ways to entertain
yourself. These apps offer hours of
viewing pleasure.

View entertainmentapps
in the App Store >

Food & Drink

Hungry? Thirsty? A little of both? Learn
new recipes, drinks, and the secrets
behind what makes a great meal.

View food and drink apps
in the App Store >

How can you tell whether

software you
— Develop
— Buy
is safe to install and run?

Manual testing

Software

= ~only examines
small subset of

@ behaviors

=4 1 24

{4132

-3 1 2 P4 U 34

H(a)- H2H3H1H?EZ

{3 {12 (3 o1 {3)4

—4 UL PR A UL U

Behaviors

Program Analyzers

1 mem leak 324

buffer oflow 4,353,245
Program

2

3 sql injection 23,212
Ana Iyzer ‘ 4 stack oflow 86,923

5

dang ptr 8,491

10,502 infoleak 10,921

Cost of Fixing a Defect

Development QA Release Maintenance

Credit: Andy Chou, Coverity

Cost of security or data privacy
vulnerability?

Two options

e Static analysis

— Inspect code or run automated method to find
errorsor gain confidence about their absence

* Dynamic analysis

— Run code, possibly under instrumented
conditions, to see if there are likely problems

Static vs Dynamic Analysis

* Static
— Consider all possible inputs (in summary form)
— Find bugs and vulnerabilities
— Can prove absence of bugs, in some cases
* Dynamic
— Need to choose sample test input
— Can find bugs vulnerabilities
— Cannot prove their absence

Static Analysis

* Long research history
 Decade of commercial products

— FindBugs, Fortify, Coverity, MS tools, ...

* Main topic for this lecture

Dynamic analysis

* |[nstrument code for testing
— Heap memory: Purify
— Perl tainting (information flow)
— Java race condition checking
* Black-box testing
— Fuzzing and penetration testing
— Black-box web application security analysis

 Will come back to later in course

Summary

* Program analyzers

— Find problems in code beforeit is shipped to
customers or before you install and run it

e Static analysis
— Analyze code to determine behavior on all inputs
* Dynamic analysis

— Choose some sample inputs and run code to see
what happens

STATIC ANALYSIS

Static Analysis: Outline

* General discussion of static analysis tools
— Goals and limitations
— Approach based on abstract states

 More about one specific approach
— Property checkers from Engler et al., Coverity
— Sample security checkers results

 Static analysis for of Android apps

Slides from: S. Bugrahe, A. Chou, I&T Dillig, D. Engler, J. Franklin, A. Aiken, ...

Static analysis goals

* Bug finding
— Identify code that the programmer wishes to
modify or improve

e Correctness

— Verify the absence of certain classes of errors

Soundness, Completeness

Soundness “Sound for reporting correctness”

Analysis says no bugs & No bugs

or equivalently

There is a bug & Analysis finds a bug

Completeness “Complete for reporting correctness”
No bugs €& Analysis says no bugs

Recall: A& B isequivalentto (*™B) & (*™A)

Sound

Unsound

Complete

Reports all errors
Reports no false alarms

Undecidable

May not report all errors
Reports no false alarms

Decidable

Incomplete

Reports all errors
May report false alarms

Decidable

May not report all errors
May report false alarms

Decidable

Sound Program Analyzer

Analyze large
code bases

mem leak 24

2 buffer oflow ,353,245 - false alarm
Program 3 sql injection 23,212
Ana Iyzer l 4 stack oflow 86,923
10,502 infoleak 10,921
Sound: may May emit
report many
false alarms

warnings

Sound

v - Mepatted Over-approximation of
§ L
/ Error Behaviors

False approximation is too coarse...
Alarm Behaibitso many false alarms

Software

Outline

e General discussion of tools
— Goals and limitations
mmm) Approach based on abstract states

 More about one specific approach
— Property checkers from Engler et al., Coverity
— Sample security-related results

 Static analysis for Android malware

Slides from: S. Bugrahe, A. Chou, I&T Dillig, D. Engler, J. Franklin, A. Aiken, ...

Does this program ever crash?

entry
A 4
X<€0
!
IsY=07? [€
yes no
XEX+1 X< X-1

IsY=07?

yes

IsX<0?

no

yes

crash

exit

no

Does this program ever crash?

infeasible path!

entry
A 4
X<€0
!
IsY=07? |€
yes no
XEX+1 X< X-1

\/

IsY=07?

yes

IsX<0?

nNO

exit

yes no

crash

... program will never crash

Try analyzing without approximating...

non-termination!

entry
\ 4
X €0
X=0)ccooomi l
IsY=07? |€
yes no
X=2) ¢
XEX+1 X€EX-1
X =

... therefore, need to approximate

dataflow elements

transfer function

dout = f(dln)

dataflow equation

doutl = fl(dinl)

doutl = din2

dout2 = fz(dinz)

f; f
dout1 \ / doutz
Gjoin —-----o -
ding -----------
f3
Qoutz -
v

What is the space of dataflow elements, i
What is the least upper bound operator, L1?

outl — 1:l(dinl)
out2 = 1:Z(dinz)

join — doutll_| dout2

O 0 o o o
i
o
£
W

least upper bound operator
Example: union of possible values

Try analyzing with “signs” approximation...

entry

lost
precision

X=T VQN ----------------------- o (X=T

terminates... crash
... but reports false alarm
... therefore, need more precision

refirséghsigatticdtice Boolean formula lattice

Try analyzing with “path-sensitive signs” approximation...

entry

(X=0)(CYs0)

X =neg—(Ysb)

"X =negp (Y0)

(X =po9(Y=0)

Y
X€0
Ctrue) CX=0)--ccooeeee . l
IsY=07 [€
es
(V=0) (X=0) - Y oo 3
XEX+1 X €EX-1
Y=0)X =pos)---——- \/ ---------
— no precision loss
r(Y=0)):gg = po 5 .
(Y &l =
{(V=0 & =pos -
. IsX<0? exit
— refinement
yes no
terminates... crash

... ho false alarm
... soundly proved never crashes

Outline

e General discussion of tools
— Goals and limitations
— Approach based on abstract states

*More about one specific approach
— Property checkers from Engler et al., Coverity
— Sample security-related results

 Static analysis for Android malware

Slides from: S. Bugrahe, A. Chou, I&T Dillig, D. Engler, J. Franklin, A. Aiken, ...

Unsound Program Analyzer

analyze large
code bases

1 mem leak 24

2 buffer oflow ,353,245 4mm false alarm
Program 3 sql injection 23,212
Ana Iyzer ‘ 4 stack oflow 86,923

5 dang ptr 8491 ¢ false alarm

Not sound: may

miss some bugs may emit
false alarms

Demo

e Coverity video: http://youtu.be/ Vt4niZfNeA

* Observations
— Code analysis integrated into development workflow

— Program context important: analysis involves sequence of
function calls, surrounding statements

— Thisis a sales video: no discussion of false alarms

Outline

e General discussion of tools
— Goals and limitations

— Approach based on abstract states

 More about one specific approach
m==) Property checkers from Engler et al., Coverity
— Sample security-related results

 Static analysis for Android malware

Slides from: S. Bugrahe, A. Chou, I&T Dillig, D. Engler, J. Franklin, A. Aiken, ...

Bugs to Detect

Some examples

» Crash Causing Defects * Uninitialized variables

* Null pointer dereference * Invalid use of negative values

» Use after free Passing large parameters by value
* Double free « Underallocations of dynamic data
 Array indexing errors * Memory leaks

- Mismatched array new/delete * File handle leaks

 Potential stack overrun * Network resource leaks

 Potential heap overrun * Unused values

* Return pointers to local variables « Unhandled return codes

* Logically inconsistent code « Use of invalid iterators

Slide credit: Andy Chou

Example: Check for missing optional args
* Prototype for open() syscall:
int open(const char *path, int oflag, /* mode_t mode*/...);

* Typical mistake:
fd = open(“file”, O_CREAT):

* Result: file has random permissions

* Check: Look for oflags == O_CREAT without mode
argument

Example: Chroot protocol checker

« Goal: confine process to a “jail” on the filesystem
— chroot() changes filesystem root for a process

* Problem
— chroot() itself does not change current working directory

<->chr‘oo’r()

open("../file",...)

hdir("/"

e

Y

Error if open
before chdir

TOCTOU

« Race condition between time of check and use

* Not applicable to all programs

check(“foo")/-\ use("foo")
oD

Tainting checkers

Tainted data
accepted from
source

Y
Unvetted
data taints
other data
transitively

Y
Tainted data

" 1is used in an ———

- ———

operator or S~ T
function

¥ ¥
Example Sinks: system() printf() malloc() strcpyl() Sent to RDBMS Included in HTML

Resultant command format integer/ | buffer SQL injection cross site
Vulnerability: injection @ string buffer overflow scripting
manip. overflow

Example code with function def, calls

#include <stdlib.h>
#include <stdio.h>

void say hello (char * name, int size) ({
printf ("Enter your name: ");
fgets(name, size, stdin);
printf ("Hello %s.\n", name);

}

int main(int argc, char *argv[]) {
if (argc '= 2) {
printf ("Error, must provide an input buffer size.\n");
exit(-1);
}
int size = atoi(argv[1l]);
char * name = (char*)malloc(size) ;
if (name) {
say hello(name, size);
free (name) ;
} else {
printf("Failed to allocate %d bytes.\n", size);
}
}

Callgraph

Reverse Topological Sort

8 { main

“am | [on | [e | [maloc | sey o]

3 4 5 6 /\7}}

ldea: analyze function { fgets] { printf
before you analyze caller

2 1

Apply Library Models

8 [main

R =S

3 4 5 6

7

Tool has built-in summaries of
library function behavior

Bottom Up Analysis

8 [main

\ 4

- -

3 4 5 6

7

Analyze function using known
properties of functions it calls

Bottom Up Analysis

8 [main

\ 4

3 4 5 6

Analyze function using known
properties of functions it calls

Bottom Up Analysis

-

4 5 6

Finish analysis by analyzing all
functions in the program

Finding Local Bugs

#define SIZE 8
void set a b(char * a, char * b) {
char * buf[SIZE];

if (a) {
b = new char|[5];
} else {

if (a && b) {
buf [SIZE] = a;
return;

} else {
delete [] b;

Control Flow Graph
S —

char * buf[8];
l Represent logical structure of
code in graph form

if (a)
a la
b = new char [5]; if (a && b)
a&&b l(a && b)
— buf[8] = a; delete [] b;
*b — IX!;
*a = *b;

Path Traversal

Conceptually Analyze each path

—1— through control graph separately

har * buf[8];
S DUEL Actually Perform some checking

l computation once per node;
if (a) combine paths at merge nodes
a la
b = new char [3]; if (a && b)
a&&b I(a && b)
— buf[8] = a; delete [] b;
*b — iX’.
*a = *b;

Apply Checking

Null pointers Use after free Array overrun

e ————

char * buf[8]; See how three checkers are run for this path
if (a)
13 Checker
T » Defined by a state diagram, with state
I 5 9 transitions and error states
I(a && b)
delete [] b; Run Checker
| « Assign initial state to each program var
*h = % » State at program point depends on
state at previous point, program actions
Y » Emit error if error state reached
*a — *b

Apply Checking

Null pointers Use after free Array overrun
—1——

char * buf[8];
“buf is 8 bytes”

if ‘('a)

la

if (a && b)

l(a && b)
delete [] b;

Apply Checking

Null pointers Use after free Array overrun

e ————

char * buf[8];

“buf is 8 bytes”
if (a)
la “a is null”

if (a && b)
l(a && b)
delete [] b;

Apply Checking

Null pointers Use after free Array overrun

char * buf[8];

“buf is 8 bytes”

if (a)

a | “ais null”

if (a && b)
I(a&&b) | Already knew
delete [] b; a was null

*b = X
*a = *b

Apply Checking

Null pointers Use after freeArray overrun

e ———

char * buf[8];

“buf is 8 bytes”
if (a)
a | “a is null”
if (a && b)
I(a && b)
delete [] b;
“b is deleted”
*b = x
*a="b

Apply Checking

Null pointers Use after free Array overrun

e ————

char * buf[8];

“buf is 8 bytes”
if (a)
a | “a is null”
if (a && b)
I(a && b)
delete [] b;
“b is deleted”
*b="x
| “b dereferenced!”
*a="b

Apply Checking

Null pointers Use after free Array overrun

e ————

char * buf[8];

“buf is 8 bytes”
if (a)
a | “a is null”
if (a && b)
I(a && b)
delete [] b;
| “b is deleted”
*b — ‘X’;
| “b dereferenced!”
*a — *b.

| No more errors
END reported for b

False Positives

« What is a bug? Something the user will fix.

« Many sources of false positives
— False paths
— ldioms
— Execution environment assumptions
— Killpaths
— Conditional compilation
— “third party code”
— Analysis imprecision

A False Path
N

char * buf[8];

l

if (a)
a la
b = new char [5]; if (a && b)
a&&b l(a && b)
— buf[8] = a; delete [] b;
*b — IX!;
*a — *b,

False Path Pruning

Integer Range Disequality Branch

char * buf[8];

if ‘('a)

la

if (@ && b)
a&&b |
buf[8] = a;

END

False Path Pruning

char * buf[8];

la

a&&b

if ‘('a)

if (a && b)

buf[8] = a;

END

Integer Range

“a in [0,0]”

Disequality Branch

“a==01s true”

False Path Pruning

char * buf[8];

la

a&&b

if ‘('a)

if (a && b)

buf[8] = a;

END

Integer Range

“a in [0,0]”

Disequality Branch

“a != O”

“a==01s true”

False Path Pruning

char * buf[8];

la

a&&b

if ‘('a)

if (a && b)

buf[8] = a;

END

Integer Range

Disequality Branch

Impossible

“a in [0,0]”

“a != O”

“a==01s true”

Outline

* General discussion of tools

— Goals and limitations

— Approach based on abstract states
 More about one specific approach

— Property checkers from Engler et al., Coverity
mmm) Reducing false positive using circumstantial evidence

— Sample security-related results
e Static analysis for Android malware

Slides from: S. Bugrahe, A. Chou, I&T Dillig, D. Engler, J. Franklin, A. Aiken, ...

Environment Assumptions

* Should the return value of malloc() be checked?

int *p = malloc(sizeof(int));

*p = 42;

OS Kernel: File server:
Crash machine. || Pause filesystem.

Web application:
200ms downtime

Spreadsheet:
Lose unsaved changes.

Game:
Annoy user.

IP Phone:
Annoy user.

Library: | | Medical device:

? malloc?!

Statistical Analysis

 Assume the code is usually right

3/4
deref

[

int *p = malloc(sizeof(int));
*p = 42;

int *p = malloc(sizeof(int));
*p = 42;

int *p = malloc(sizeof (int)):;
*p = 42;

int *p = malloc(sizeof(int));
if(p) *p = 42;

int *p = malloc(sizeof(int));

if(p) *p = 42;

int *p = malloc(sizeof(int));

if(p) *p = 42:

int *p = malloc(sizeof(int));

if(p) *p = 42;

int *p = malloc(sizeof(int));

*p = 42;

1/4
deref

Outline

e General discussion of tools
— Goals and limitations
— Approach based on abstract states

 More about one specific approach
— Property checkers from Engler et al., Coverity
m==) Sample security-related results

 Static analysis for Android malware

Slides from: S. Bugrahe, A. Chou, I&T Dillig, D. Engler, J. Franklin, A. Aiken, ...

Application to Security Bugs

« Stanford research project

— Ken Ashcraft and Dawson Engler, Using Programmer-Written
Compiler Extensions to Catch Security Holes, IEEE Security
and Privacy 2002

— Used modified compiler to find over 100 security holes in Linux
and BSD

— http://www.stanford.edu/~engler/

 Benefit

— Capture recommended practices, known to experts, in tool
available to all

Sanitize integers before use

Warn when unchecked integers from untrusted
sources reach trusting sinks

Syscall Network copyin(&v, P, Ien)
param packet /
. any<=v <= any -
v.tainted Use(v)
memcpy(p, g, v) array[v]
copyin(p,q,v) while(i < v)
copyout(p,q,v)

\ 4
<

Linux: 125 errors, 24 false; BSD: 12 errors, 4 false

Example security holes

 Remote exploit, no checks

/* 2.4.9/drivers/isdn/act2000/capi.c:actcapi dispatch */
isdn ctrl cmd;

while ((skb = skb dequeue (&card->rcvq))) {
msg = skb->data;

memcpy (cmd .parm. setup.phone,
msg->msg.connect ind.addr.num,
msg->msg.connect ind.addr.len - 1);

Example security holes

 Missed lower-bound check:

/* 2.4.5/drivers/char/drm/i810 dma.c */

if (copy from user(&d, arg, sizeof(arqg)))
return -EFAULT;,
if(d.idx > dma->buf count)
return —-EINVAL;,
buf = dma->buflist[d.idx];
Copy from user(buf priv->virtual, d.address, d.used);

User-pointer inference

* Problem: which are the user pointers?
— Hard to determine by dataflow analysis
— Easy to tell if kernel believes pointer is from user!

» Belief inference
- “*p” implies safe kernel pointer
— “copyin(p)/copyout(p)” implies dangerous user ptr
— Error: pointer p has both beliefs.

* Implementation: 2 pass checker

iInter-procedural: compute all tainted pointers
local pass to check that they are not dereferenced

Results for BSD and Linux

« All bugs released to implementers; most serious fixed

Linux BSD
Violation Bug Fixed Bug Fixed

Outline

e General discussion of tools
— Goals and limitations
— Approach based on abstract states

 More about one specific approach
— Property checkers from Engler et al., Coverity
— Sample security-related results

*Static analysis for Android malware

Slides from: S. Bugrahe, A. Chou, I&T Dillig, D. Engler, J. Franklin, A. Aiken, ...

STAMP Admission System

Dynamic Analysis
Fewer behaviors,
more details

Static

3

Dynamic

Static Analysis
More behaviors,
fewer details

{r

Alex Aiken,

John Mitchell,
Saswat Anand,
Jason Franklin
Osbert Bastani,
Lazaro Clapp,
Patrick Mutchler,
Manolis Papadakis

Data Flow Analysis

getLoc() 5 Source:

Location

— >

Location

\

—> SMS

® Source-to-sink flows
O Sources: Location, Calendar, Contacts, Device ID etc.
O Sinks: Internet, SMS, Disk, etc.

Sink: SMS

Sink: Internet

sendSMS() —P
sendlnet() —>
Location =

Internet

Applications of Data Flow Analysis

® Malware/Greyware Analysis
O Data flow summaries enable enterprise-specific policies

® API Misuse and Data Theft Detection

FB API

—

Source: >
FB=Data

Send w
Internet ——»| Sink: Internet

® Automatic Generation of App Privacy Policies
O Avoid liability, protect consumer privacy Privacy Policy

® Vulnerability Discovery

Web

This app collects your:
Contacts

Phone Number
Address

—

Source:
Untrusted=Data

—> SQL Stmt —P| Sink: SQL

Challenges

® Android is 3.4M+ lines of complex code
o Uses reflection, callbacks, native code

¢ Scalability: Whole system analysis impractical
® Soundness: Avoid missing flows

® Precision: Minimize false positives

STAMP Approach

Too expensive!

o .
App J App J Model Android/Java

O Sources and sinks

O Data structures
O Callbacks
O

500+ models

Models

L]

Android .
® Whole-program analysis

o Context sensitive

0S

HW

Building Models

® 30k+ methods in Java/Android API
o 5 mins x 30k = 2500 hours

® Follow the permissions

o 20 permissions for sensitive sources
" ACCESS_FINE_LOCATION (8 methods with source annotations)
" READ PHONE_STATE - (9 methods)

o 4 permissions for sensitive sinks
" INTERNET, SEND_SMS, etc.

Identifying Sensitive Data

android.Telephony.TelephonyManager: String getDeviceId()

® Returns device IMEI in String
® Requires permission GET_PHONE_STATE

@STAMP(
SRC ="$GET_PHONE_STATE.deviceid",
SINK ="@return™

)

Data We Track (Sources)

Account data
Audio
Calendar
Call log
Camera
Contacts
Device Id
Location
Photos (Geotags)
SD card data
SMS

30+ types of
sensitive data

Data Destinations (Sinks)

Internet (socket)
SMS

Email

System Logs
Webview/Browser
File System
Broadcast Message

10+ types of
exit points

Currently Detectable Flow Types

396 Flow Types

Unique Flow Types = Sources x Sink

Example Analysis

Contact Sync for Facebook (unofficial)

‘/' Google play Search o

SHOP MY MUSIC MY BOOKS MY MAGAZINES MY MOVIES & TV MY ANDROID APPS

Contact Sync for

Facebook

Danut Chereches

>
L

Description R =1){ 21k
2 Tweet
This application allows you to synchronize your Facebook contacts on Android

k(3.935) ABOUT THIS APP
l INSTALL To configure, go to "Settings => Accounts & Sync => Add Account”. RATING
Depending on how many friends you have, the first import might take a while, so be patient. * kK ko
(3.935)
IMPORTANT: UPDATED
- P - 5 " r7.2012
Th's, app is compatible with your * Facebook does not allow to export phone numbers or emails. Only names, pictures and Novemss o
Sprint Samsung Nexus S 4G. stawses are synced. CURRENT VERSION
* Facebook users have the option to block one or all apps. If they opt for that, they will be Lot
More from developer EXCLUDED from your friends list. "‘EOU',QES ANDROID:
2.2 and up
Where Money Go? Please send bug reports or any kind of feedback. ;’:E‘C’OQ"-
ial
& DANUT CHERECHES
. INSTALLS:
m * K * * * (4) https://iwww.facebook.com/ContactSync B,
Free https://plus.google.com/u/0/100286050370302911737 PPN
https://github.com/loadrunner/Facebook-Contact-Sync
Deschis @
@ DARUT CHERECHES Visit Developer's Website > Email Developer Privacy Policy
* K * * %k (6) iast 30 days
Free App Screenshots See
See more > .
PRICE.
Free

Users who viewed this also viewed

Endless scrolling

on 9GAG . We're all CONTENT RATING:

DOOMED! Everyone
HaxSync - 4.x Facebook Sy...
. * ok ok Kk (3,232) . el
$0.99

m Friends Sync
WA STUDIOS

Contact Sync Permissions

Category

Permission

Description

Your Accounts

AUTHENTICATE_ACCOUNTS

Act as an account authenticator

MANAGE_ACCOUNTS

Manage accounts list

USE_CREDENTIALS

Use authentication credentials

Network Communication

INTERNET

Full Internet access

ACCESS_NETWORK_STATE

View network state

Your Personal Information

READ_CONTACTS

Read contact data

WRITE_CONTACTS

Write contact data

System Tools

WRITE_SETTINGS

Modify global system settings

WRITE_SYNC_SETTINGS

Write sync settings (e.g. Contact sync)

READ_SYNC_SETTINGS

Read whether sync is enabled

READ_SYNC_STATS

Read history of syncs

Your Accounts

GET_ACCOUNTS

Discover known accounts

Extra/Custom

WRITE_SECURE_SETTINGS

Modify secure system settings

Possible Flows from Permissions

Sources Sinks

READ_CONTACTS

\\//
\X%Z‘/

\ _—

/>
7 RN\
TSR

2\

READ_SYNC_SETTINGS

READ_SYNC_STATS

GET_ACCOUNTS

INTERNET

Expected Flows

Sources Sinks

READ_CONTACTS

READ_SYNC_SETTINGS

READ_SYNC_STATS

GET_ACCOUNTS

INTERNET

0

Observed Flows

ST Write s Sink:
FBAPI —p FB_Data " Contacts Contact_Book

Read . Source: / :
Contacts Contacts S e _

Example Study: Mobile Web Apps

e Goal

ldentify security concerns and vulnerabilities

specific to mobile apps that access the web using an
embedded browser

* Technical summary
e WebView object renders web content

* methods loadUrl, loadData, loadDataWithBaseUrl, postUrl

e addJavascriptinterface(obj, name) allows JavaScript code
in the web content to call Java object method name.foo()

Sample results

Analyze 998,286 free web apps fromJune 2014

Mobile Web App Feature | % Apps

JavaScript Enabled

97

JavaScript Bridge

36

shouldOverrideUrlLoading 94

shouldInterceptRequest 47
onRecervedSsiError 21/
postUrl 2

Custom URL Patterns 10

Vuln % Relevant | % Vulnerable
Unsafe Navigation 15 KR
Unsafe Retrieval 40 56
Unsafe SSL 2 29
Exposed POST 2 !
Leaky URL 10 16

Summary

e Static vs dynamic analyzers

* General properties of static analyzers
— Fundamental limitations
— Basic method based on abstract states
* More details on one specific method
— Property checkers from Engler et al., Coverity
— Sample security-related results
 Static analysis for Android malware
— STAMP method, sample studies

Slides from: S. Bugrahe, A. Chou, I&T Dillig, D. Engler, J. Franklin, A. Aiken, ...

