
Program	Analysis	for	Security

John	Mitchell

CS	155 Spring	2016

MOTIVATION	FOR	
PROGRAM	ANALYZERS

Software	bugs	are	serious	problems

Thanks:	Isil	and	Thomas	Dillig

[PopPhoto.com Feb 10]

Facebook missed a
single security check…

App	stores

How	can	you	tell	whether	
software	you
– Develop	
– Buy
is	safe	to	install	and	run?

Entry

1

2 3

4

Software

Exit

Behaviors

Entry

1

2

4

Exit

1 2 41 2 4

1 3 4

1 2 4 1 2 4

1 2 3 1 2 4 1 3 4

1 2 4 1 2 3 1 3 4

1 2 3 1 2 3 1 3 4

1 2 4 1 2 4 1 3 4

.	.	.

1 2 4 1 3 4

Manual	testing
only	examines	
small	subset	of	
behaviors

7

Program	Analyzers

Code
Report Type Line

1 mem leak 324

2 buffer	oflow 4,353,245

3 sql injection 23,212

4 stack	oflow 86,923

5 dang	ptr 8,491

… … …

10,502 info	leak 10,921

Program	
Analyzer

Spec

Cost	of	Fixing	a	Defect

Development QA Release Maintenance

Credit: Andy Chou, Coverity

Cost	of	security	or	data	privacy	
vulnerability?

Two	options

• Static	analysis
– Inspect	code	or	run	automated	method	to	find	
errors	or	gain	confidence	about	their	absence

• Dynamic	analysis
– Run	code,	possibly	under	instrumented	
conditions,	to	see	if	there	are	likely	problems

Static	vs	Dynamic	Analysis

• Static
– Consider	all	possible	inputs	(in	summary	form)
– Find	bugs	and	vulnerabilities
– Can	prove	absence	of	bugs,	in	some	cases

• Dynamic
– Need	to	choose	sample	test	input
– Can	find	bugs	vulnerabilities
– Cannot	prove	their	absence

Static	Analysis

• Long	research	history
• Decade	of	commercial	products

– FindBugs,	Fortify,	Coverity,	MS	tools,	…
• Main	topic	for	this	lecture

Dynamic	analysis

• Instrument	code	for	testing
– Heap	memory:	Purify
– Perl	tainting			(information	flow)
– Java	race	condition	checking

• Black-box	testing
– Fuzzing	and	penetration	testing
– Black-box	web	application	security	analysis

• Will	come	back	to	later	in	course

14

Summary

• Program	analyzers
– Find	problems	in	code	before	it	is	shipped	to	
customers	or	before	you	install	and	run	it

• Static	analysis
– Analyze	code	to	determine	behavior	on	all	inputs

• Dynamic	analysis
– Choose	some	sample	inputs	and	run	code	to	see	
what	happens

STATIC	ANALYSIS

Static	Analysis:		Outline

• General	discussion	of	static	analysis	tools
– Goals	and	limitations
– Approach	based	on	abstract	states

• More	about	one	specific	approach
– Property	checkers	from	Engler	et	al.,	Coverity
– Sample	security	checkers	results

• Static	analysis	for	of	Android	apps

Slides	from:	S.	Bugrahe,	A.	Chou,	I&T	Dillig,	D.	Engler,	J.	Franklin,	A.	Aiken,	…

Static	analysis	goals

• Bug	finding
– Identify	code	that	the	programmer	wishes	to	
modify	or	improve

• Correctness
– Verify	the	absence	of	certain	classes	of	errors

Soundness,	Completeness
Property Definition

Soundness “Sound	for	reporting	correctness”
Analysis	says	no	bugs	® No	bugs
or	equivalently
There	is	a	bug	® Analysis	finds	a	bug

Completeness “Complete	for	reporting	correctness”
No	bugs	® Analysis	says	no	bugs	

Recall:		A	® B		is	equivalent	to		(ØB) ® (ØA)

Complete Incomplete
So
un

d
Un

so
un

d

Reports	all	errors
Reports	no	false	alarms

Reports	all	errors
May	report	false	alarms

Undecidable Decidable

Decidable

May	not	report	all	errors
May	report	false	alarms

Decidable

May	not	report	all	errors
Reports	no	false	alarms

Sound	Program	Analyzer

Code
Report Type Line

1 mem leak 324

2 buffer	oflow 4,353,245

3 sql injection 23,212

4 stack	oflow 86,923

5 dang	ptr 8,491

… … …

10,502 info	leak 10,921

Program	
Analyzer

Spec

Sound:may	
report	many
warnings

May	emit	
false	alarms

Analyze	large	
code	bases

false	alarm

false	alarm

Software

.	.	.

Behaviors

Sound
Over-approximation	of	

Behaviors

False	
Alarm

Reported
Error

approximation	 is	too	coarse…
…yields	too	many	false	alarms

Modules

Outline

• General	discussion	of	tools
– Goals	and	limitations
– Approach	based	on	abstract	states

• More	about	one	specific	approach
– Property	checkers	from	Engler	et	al.,	Coverity
– Sample	security-related	results

• Static	analysis	for	Android	malware
– …

Slides	from:	S.	Bugrahe,	A.	Chou,	I&T	Dillig,	D.	Engler,	J.	Franklin,	A.	Aiken,	…

entry

X	ß 0

Is	Y	=	0	?

X	ß X	+	1 X	ß X	- 1

Is	Y	=	0	?

Is	X	<	0	? exit

crash

yes

noyes

no

yes no

Does	this	program	ever	crash?

entry

X	ß 0

Is	Y	=	0	?

X	ß X	+	1 X	ß X	- 1

Is	Y	=	0	?

Is	X	<	0	? exit

crash

yes

noyes

no

yes no

infeasible	path!
…	program	will	never	crash

Does	this	program	ever	crash?

entry

X	ß 0

Is	Y	=	0	?

X	ß X	+	1 X	ß X	- 1

Is	Y	=	0	?

Is	X	<	0	? exit

crash

yes

noyes

no

yes no

X	=	0

X	=	0

X	=	1

X	=	1

X	=	1

X	=	1

X	=	1

X	=	2

X	=	2

X	=	2

X	=	2

X	=	2

X	=	3

X	=	3

X	=	3

X	=	3

non-termination!
…	therefore,	need	to	approximate

Try	analyzing	without	approximating…

X	ß X	+	1 f

din

dout

dout =	f(din)

X	=	0

X	=	1

dataflow	elements

transfer	function
dataflow	equation

X	ß X	+	1 f1

din1

dout1 =	f1(din1)

Is	Y	=	0	? f2

dout2

dout1

din2 dout1 =	din2

dout2 =	f2(din2)

X	=	0

X	=	1

X	=	1

X	=	1

dout1 =	f1(din1)

djoin =	dout1	⊔ dout2

dout2 =	f2(din2)
f1 f2

f3

dout1

din1 din2

dout2
djoin
din3

dout3

djoin =	din3
dout3 =	f3(din3)

least	upper	bound	operator
Example:	union	of	possible	values

What	is	the	space	of	dataflow	elements,	D?
What	is	the	least	upper	bound	operator,	⊔?

entry

X	ß 0

Is	Y	=	0	?

X	ß X	+	1 X	ß X	- 1

Is	Y	=	0	?

Is	X	<	0	? exit

crash

yes

noyes

no

yes no

X	=	0

X	=	0

X	=	pos
X	=	T

X	=	neg

X	=	0

X	=	T X	=	T

X	=	T

Try	analyzing	with	“signs” approximation…

terminates...
…	but	reports	false	alarm
…	therefore,	need	more	precision

lost	
precision

X	=	T

X	=	T

X	=	pos X	=	0 X	=	neg

X	=	^

X	¹neg X	¹pos
true

Y	=	0 Y	¹0

false

X	=	T

X	=	pos X	=	0 X	=	neg

X	=	^

signs	lattice Boolean	formula	latticerefined	signs	lattice

entry

X	ß 0

Is	Y	=	0	?

X	ß X	+	1 X	ß X	- 1

Is	Y	=	0	?

Is	X	<	0	? exit

crash

yes

noyes

no

yes no

X	=	0true

X	=	0Y=0

X	=	posY=0 X	=	neg Y¹0

X	=	posY=0
X	=	negY¹0

X	=	posY=0

X	=	pos Y=0

X	=	neg Y¹0

X	=	0 Y¹0

Try	analyzing	with	“path-sensitive	signs” approximation…

terminates...
…	no	false	alarm
…	soundly	proved	never	crashes

no	precision	loss

refinement

Outline

• General	discussion	of	tools
– Goals	and	limitations
– Approach	based	on	abstract	states

• More	about	one	specific	approach
– Property	checkers	from	Engler	et	al.,	Coverity
– Sample	security-related	results

• Static	analysis	for	Android	malware
– …

Slides	from:	S.	Bugrahe,	A.	Chou,	I&T	Dillig,	D.	Engler,	J.	Franklin,	A.	Aiken,	…

Unsound	Program	Analyzer

Code
Report Type Line

1 mem leak 324

2 buffer	oflow 4,353,245

3 sql injection 23,212

4 stack	oflow 86,923

5 dang	ptr 8,491

… … …

Program	
Analyzer

Spec

may	emit	
false	alarms

analyze	large	
code	bases

false	alarm

false	alarm

Not	sound:	may	
miss	some	bugs

Demo

• Coverity video:	http://youtu.be/_Vt4niZfNeA
• Observations

– Code	analysis	integrated	into	development	workflow
– Program	context	important:	analysis	involves	sequence	of	
function	calls,	surrounding	statements

– This	is	a	sales	video:	no	discussion	of	false	alarms

Outline

• General	discussion	of	tools
– Goals	and	limitations
– Approach	based	on	abstract	states

• More	about	one	specific	approach
– Property	checkers	from	Engler	et	al.,	Coverity
– Sample	security-related	results

• Static	analysis	for	Android	malware
– …

Slides	from:	S.	Bugrahe,	A.	Chou,	I&T	Dillig,	D.	Engler,	J.	Franklin,	A.	Aiken,	…

Bugs to Detect

Some examples
• Crash Causing Defects
• Null pointer dereference
• Use after free
• Double free
• Array indexing errors
• Mismatched array new/delete
• Potential stack overrun
• Potential heap overrun
• Return pointers to local variables
• Logically inconsistent code

• Uninitialized variables
• Invalid use of negative values
• Passing large parameters by value
• Underallocations of dynamic data
• Memory leaks
• File handle leaks
• Network resource leaks
• Unused values
• Unhandled return codes
• Use of invalid iterators

Slide	credit:	Andy	Chou

38

Example: Check for missing optional args

• Prototype for open() syscall:

• Typical mistake:

• Result: file has random permissions

• Check: Look for oflags == O_CREAT without mode
argument

int open(const char *path, int oflag, /* mode_t mode */...);

fd = open(“file”, O_CREAT);

39

Example: Chroot protocol checker

• Goal: confine process to a “jail” on the filesystem
− chroot() changes filesystem root for a process

• Problem
− chroot() itself does not change current working directory

chroot() chdir(“/”)

open(“../file”,…)

40

Error if open
before chdir

TOCTOU

• Race condition between time of check and use

• Not applicable to all programs

check(“foo”) use(“foo”)

41

Tainting checkers

42

Example code with function def, calls

#include <stdlib.h>
#include <stdio.h>

void say_hello(char * name, int size) {
printf("Enter your name: ");
fgets(name, size, stdin);
printf("Hello %s.\n", name);

}

int main(int argc, char *argv[]) {
if (argc != 2) {

printf("Error, must provide an input buffer size.\n");
exit(-1);

}
int size = atoi(argv[1]);
char * name = (char*)malloc(size);
if (name) {

say_hello(name, size);
free(name);

} else {
printf("Failed to allocate %d bytes.\n", size);

}
}

43

atoi

main

exit free malloc

printffgets

say_hello

Callgraph

44

atoi

main

exit free malloc

printffgets

say_hello

Reverse Topological Sort

12

3 4 5 6 7

8

Idea: analyze function
before you analyze caller

45

atoi

main

exit free malloc

printffgets

say_hello

Apply Library Models

12

3 4 5 6 7

8

Tool has built-in summaries of
library function behavior

46

atoi

main

exit free malloc

printffgets

say_hello

Bottom Up Analysis

12

3 4 5 6 7

8

Analyze function using known
properties of functions it calls

47

atoi

main

exit free malloc

printffgets

say_hello

Bottom Up Analysis

12

3 4 5 6 7

8

Analyze function using known
properties of functions it calls

48

atoi

main

exit free malloc

printffgets

say_hello

Bottom Up Analysis

12

3 4 5 6 7

8

Finish analysis by analyzing all
functions in the program

49

Finding Local Bugs

#define SIZE 8
void set_a_b(char * a, char * b) {
char * buf[SIZE];
if (a) {

b = new char[5];
} else {

if (a && b) {
buf[SIZE] = a;
return;
} else {
delete [] b;
}
*b = ‘x’;

}
*a = *b;
}

50

char * buf[8];

if (a)

b = new char [5]; if (a && b)

buf[8] = a; delete [] b;

*b = ‘x’;

END

*a = *b;

a !a

a && b !(a && b)

Control Flow Graph

Represent logical structure of
code in graph form

51

char * buf[8];

if (a)

b = new char [5]; if (a && b)

buf[8] = a; delete [] b;

*b = ‘x’;

END

*a = *b;

a !a

a && b !(a && b)

Path Traversal

Conceptually: Analyze each path
through control graph separately

Actually Perform some checking
computation once per node;
combine paths at merge nodes

Conceptually

Actually

52

char * buf[8];

if (a)

if (a && b)

delete [] b;

*b = ‘x’;

END

*a = *b;

!a

!(a && b)

Apply Checking

Null pointers Use after free Array overrun

See how three checkers are run for this path

•
• Defined by a state diagram, with state

transitions and error states

Checker

•
• Assign initial state to each program var
• State at program point depends on

state at previous point, program actions
• Emit error if error state reached

Run Checker

53

char * buf[8];

if (a)

if (a && b)

delete [] b;

*b = ‘x’;

END

*a = *b;

!a

!(a && b)

Apply Checking

Null pointers Use after free Array overrun

“buf is 8 bytes”

54

char * buf[8];

if (a)

if (a && b)

delete [] b;

*b = ‘x’;

END

*a = *b;

!a

!(a && b)

Apply Checking

Null pointers Use after free Array overrun

“buf is 8 bytes”

“a is null”

55

char * buf[8];

if (a)

if (a && b)

delete [] b;

*b = ‘x’;

END

*a = *b;

!a

!(a && b)

Apply Checking

Null pointers Use after free Array overrun

“buf is 8 bytes”

“a is null”

Already knew
a was null

56

char * buf[8];

if (a)

if (a && b)

delete [] b;

*b = ‘x’;

END

*a = *b;

!a

!(a && b)

Apply Checking

Null pointers Use after freeArray overrun

“buf is 8 bytes”

“a is null”

“b is deleted”

57

char * buf[8];

if (a)

if (a && b)

delete [] b;

*b = ‘x’;

END

*a = *b;

!a

!(a && b)

Apply Checking

Null pointers Use after free Array overrun

“buf is 8 bytes”

“a is null”

“b is deleted”

“b dereferenced!”

58

char * buf[8];

if (a)

if (a && b)

delete [] b;

*b = ‘x’;

END

*a = *b;

!a

!(a && b)

Apply Checking

Null pointers Use after free Array overrun

“buf is 8 bytes”

“a is null”

“b is deleted”

“b dereferenced!”

No more errors
reported for b

59

False Positives

• What is a bug? Something the user will fix.

• Many sources of false positives
− False paths
− Idioms
− Execution environment assumptions
− Killpaths
− Conditional compilation
− “third party code”
− Analysis imprecision
− …

60

char * buf[8];

if (a)

b = new char [5]; if (a && b)

buf[8] = a; delete [] b;

*b = ‘x’;

END

*a = *b;

a !a

a && b !(a && b)

A False Path

61

char * buf[8];

if (a)

if (a && b)

buf[8] = a;

END

!a

a && b

False Path Pruning

Integer Range Disequality Branch

62

char * buf[8];

if (a)

if (a && b)

buf[8] = a;

END

!a

a && b

False Path Pruning

“a in [0,0]” “a == 0 is true”

Integer Range Disequality Branch

63

char * buf[8];

if (a)

if (a && b)

buf[8] = a;

END

!a

a && b

False Path Pruning

“a in [0,0]” “a == 0 is true”

“a != 0”

Integer Range Disequality Branch

64

char * buf[8];

if (a)

if (a && b)

buf[8] = a;

END

!a

a && b

False Path Pruning

“a in [0,0]” “a == 0 is true”

“a != 0”

Impossible

Integer Range Disequality Branch

65

Outline

• General	discussion	of	tools
– Goals	and	limitations
– Approach	based	on	abstract	states

• More	about	one	specific	approach
– Property	checkers	from	Engler	et	al.,	Coverity

• Reducing	false	positive	using	circumstantial	evidence
– Sample	security-related	results

• Static	analysis	for	Android	malware
– …

Slides	from:	S.	Bugrahe,	A.	Chou,	I&T	Dillig,	D.	Engler,	J.	Franklin,	A.	Aiken,	…

Environment Assumptions

• Should the return value of malloc() be checked?

int *p = malloc(sizeof(int));
*p = 42;

OS Kernel:
Crash machine.

File server:
Pause filesystem.

Spreadsheet:
Lose unsaved changes.

Game:
Annoy user.

Library:
?

Medical device:
malloc?!

Web application:
200ms downtime

IP Phone:
Annoy user.

67

Statistical Analysis

• Assume the code is usually right

int *p = malloc(sizeof(int));
*p = 42;

int *p = malloc(sizeof(int));
if(p) *p = 42;

int *p = malloc(sizeof(int));
*p = 42;

int *p = malloc(sizeof(int));
*p = 42;

int *p = malloc(sizeof(int));
if(p) *p = 42;

int *p = malloc(sizeof(int));
*p = 42;

int *p = malloc(sizeof(int));
if(p) *p = 42;

int *p = malloc(sizeof(int));
if(p) *p = 42;

3/4
deref

1/4
deref

68

Outline

• General	discussion	of	tools
– Goals	and	limitations
– Approach	based	on	abstract	states

• More	about	one	specific	approach
– Property	checkers	from	Engler	et	al.,	Coverity
– Sample	security-related	results

• Static	analysis	for	Android	malware
– …

Slides	from:	S.	Bugrahe,	A.	Chou,	I&T	Dillig,	D.	Engler,	J.	Franklin,	A.	Aiken,	…

Application to Security Bugs

• Stanford research project
− Ken Ashcraft and Dawson Engler, Using Programmer-Written

Compiler Extensions to Catch Security Holes, IEEE Security
and Privacy 2002

− Used modified compiler to find over 100 security holes in Linux
and BSD

− http://www.stanford.edu/~engler/
• Benefit

− Capture recommended practices, known to experts, in tool
available to all

70

Sanitize integers before use

Linux: 125 errors, 24 false; BSD: 12 errors, 4 false

array[v]
while(i < v)

…

v.clean Use(v)v.tainted

Syscall
param

Network
packet

copyin(&v, p, len)

memcpy(p, q, v)
copyin(p,q,v)
copyout(p,q,v)

ERROR

Warn when unchecked integers from untrusted
sources reach trusting sinks

Example security holes

/* 2.4.9/drivers/isdn/act2000/capi.c:actcapi_dispatch */
isdn_ctrl cmd;
...
while ((skb = skb_dequeue(&card->rcvq))) {

msg = skb->data;
...
memcpy(cmd.parm.setup.phone,

msg->msg.connect_ind.addr.num,
msg->msg.connect_ind.addr.len - 1);

• Remote exploit, no checks

72

Example security holes

/* 2.4.5/drivers/char/drm/i810_dma.c */

if(copy_from_user(&d, arg, sizeof(arg)))
return –EFAULT;

if(d.idx > dma->buf_count)
return –EINVAL;

buf = dma->buflist[d.idx];
Copy_from_user(buf_priv->virtual, d.address, d.used);

• Missed lower-bound check:

73

User-pointer inference

• Problem: which are the user pointers?
− Hard to determine by dataflow analysis
− Easy to tell if kernel believes pointer is from user!

• Belief inference
− “*p” implies safe kernel pointer
− “copyin(p)/copyout(p)” implies dangerous user ptr
− Error: pointer p has both beliefs.

• Implementation: 2 pass checker
inter-procedural: compute all tainted pointers
local pass to check that they are not dereferenced

74

Results for BSD and Linux

• All bugs released to implementers; most serious fixed

Gain control of system 18 15 3 3
Corrupt memory 43 17 2 2
Read arbitrary memory 19 14 7 7
Denial of service 17 5 0 0
Minor 28 1 0 0
Total 125 52 12 12

Linux BSD
Violation Bug Fixed Bug Fixed

75

Outline

• General	discussion	of	tools
– Goals	and	limitations
– Approach	based	on	abstract	states

• More	about	one	specific	approach
– Property	checkers	from	Engler	et	al.,	Coverity
– Sample	security-related	results

• Static	analysis	for	Android	malware
– …

Slides	from:	S.	Bugrahe,	A.	Chou,	I&T	Dillig,	D.	Engler,	J.	Franklin,	A.	Aiken,	…

STAMP	Admission	System

Static

Dynamic

STAMP

Static	Analysis
More	behaviors,	
fewer	details

Dynamic	Analysis
Fewer	behaviors,	
more	details

Alex	Aiken,
John	Mitchell,
Saswat	Anand,
Jason	Franklin
Osbert	Bastani,
Lazaro	Clapp,
Patrick	Mutchler,
Manolis	Papadakis

Data Flow Analysis

getLoc() sendSMS()

sendInet()

Source:
Location Sink: SMS

Sink: Internet

Location SMS Location Internet

• Source-to-sink flows
o Sources: Location, Calendar, Contacts, Device ID etc.
o Sinks: Internet, SMS, Disk, etc.

Applications of Data Flow Analysis

• Vulnerability Discovery

Privacy Policy
This app collects your:
Contacts
Phone Number
Address

FB API Send
Internet

Source:
FB_Data Sink: Internet

Web Source:
Untrusted_Data SQL Stmt Sink: SQL

• Malware/Greyware Analysis
o Data flow summaries enable enterprise-specific policies

• API Misuse and Data Theft Detection

• Automatic Generation of App Privacy Policies
o Avoid liability, protect consumer privacy

Challenges
• Android is 3.4M+ lines of complex code

o Uses reflection, callbacks, native code

• Scalability: Whole system analysis impractical

• Soundness: Avoid missing flows

• Precision: Minimize false positives

STAMP Approach

• Model Android/Java
o Sources and sinks
o Data structures
o Callbacks
o 500+ models

• Whole-program analysis
o Context sensitive

Android

Models

App App

Too expensive!

OS

HW

Building Models

• 30k+ methods in Java/Android API
o 5 mins x 30k = 2500 hours

• Follow the permissions
o 20 permissions for sensitive sources

§ ACCESS_FINE_LOCATION (8 methods with source annotations)
§ READ_PHONE_STATE - (9 methods)

o 4 permissions for sensitive sinks
§ INTERNET, SEND_SMS, etc.

Identifying Sensitive Data

• Returns device IMEI in String
• Requires permission GET_PHONE_STATE

@STAMP(
SRC ="$GET_PHONE_STATE.deviceid",
SINK ="@return"

)

android.Telephony.TelephonyManager: String getDeviceId()

Data We Track (Sources)

• Account data
• Audio
• Calendar
• Call log
• Camera
• Contacts
• Device Id
• Location
• Photos (Geotags)
• SD card data
• SMS

30+ types of
sensitive data

Data Destinations (Sinks)

• Internet (socket)
• SMS
• Email
• System Logs
• Webview/Browser
• File System
• Broadcast Message

10+ types of
exit points

Currently Detectable Flow Types

Unique Flow Types = Sources x Sink

396 Flow Types

Example Analysis

Contact Sync for Facebook (unofficial)

Contact Sync Permissions
Category Permission Description

Your Accounts AUTHENTICATE_ACCOUNTS Act as an account authenticator

MANAGE_ACCOUNTS Manage accounts list

USE_CREDENTIALS Use authentication credentials

Network Communication INTERNET Full Internet access

ACCESS_NETWORK_STATE View network state

Your Personal Information READ_CONTACTS Read contact data

WRITE_CONTACTS Write contact data

System Tools WRITE_SETTINGS Modify global system settings

WRITE_SYNC_SETTINGS Write sync settings (e.g. Contact sync)

READ_SYNC_SETTINGS Read whether sync is enabled

READ_SYNC_STATS Read history of syncs

Your Accounts GET_ACCOUNTS Discover known accounts

Extra/Custom WRITE_SECURE_SETTINGS Modify secure system settings

Possible Flows from Permissions

Sources Sinks

INTERNETREAD_CONTACTS

WRITE_SETTINGSREAD_SYNC_SETTINGS

WRITE_CONTACTSREAD_SYNC_STATS

GET_ACCOUNTS WRITE_SECURE_SETTINGS

WRITE_SETTINGSINTERNET

Expected Flows

Sources Sinks

INTERNETREAD_CONTACTS

WRITE_SETTINGSREAD_SYNC_SETTINGS

WRITE_CONTACTSREAD_SYNC_STATS

GET_ACCOUNTS WRITE_SECURE_SETTINGS

WRITE_SETTINGSINTERNET

Observed Flows

FB API
Write

Contacts

Send Internet

Source:
FB_Data

Sink:
Contact_Book

Sink: InternetRead
Contacts

Source:
Contacts

Example	Study:	Mobile	Web	Apps

• Goal
Identify	security	concerns	and	vulnerabilities	
specific	to	mobile	apps	that	access	the	web	using	an	
embedded	browser

• Technical	summary
• WebView object	renders	web	content
• methods	loadUrl,	loadData,	loadDataWithBaseUrl,	postUrl
• addJavascriptInterface(obj,	name)	allows	JavaScript	code	

in	the	web	content	to	call	Java	object	method	name.foo()

Sample	results
Analyze	998,286	free	web	apps	from	June	2014

Summary

• Static	vs	dynamic	analyzers
• General	properties	of	static	analyzers

– Fundamental	limitations
– Basic	method	based	on	abstract	states

• More	details	on	one	specific	method
– Property	checkers	from	Engler et	al.,	Coverity
– Sample	security-related	results

• Static	analysis	for	Android	malware
– STAMP	method,	sample	studies

Slides	from:	S.	Bugrahe,	A.	Chou,	I&T	Dillig,	D.	Engler,	J.	Franklin,	A.	Aiken,	…

