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Cryptography 
Is 
n  A tremendous tool 
n  The basis for many security mechanisms 

Is not 
n  The solution to all security problems 
n  Reliable unless implemented properly 
n  Reliable unless used properly 
n  Something you should try to invent  

or implement yourself 



Kerckhoff’s principle 

A cryptosystem should be secure 
even if everything about the 
system, except the secret key,  
is public knowledge. 



Goal 1:secure communication 

Step 1:  Session setup to exchange key 
Step 2:  encrypt data 
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Goal 2:   Protected files 
Disk 

File 1 

File 2 

Alice Alice 

No eavesdropping 
No tampering 

Analogous to secure communication: 
 Alice today sends a message to Alice tomorrow 



Symmetric Cryptography 

Assumes parties already  
share a secret key 



Building block:   sym. encryption 

 
E, D:  cipher       k:  secret key (e.g. 128 bits) 
m, c:  plaintext,  ciphertext            n:  nonce   (aka IV) 

Encryption algorithm is publicly known 
•  Never use a proprietary cipher     

Alice 

E 
m, n E(k,m,n)=c 

Bob 

D 
c, n D(k,c,n)=m 

k k 

nonce 



Use Cases 

Single use key:    (one time key) 
•  Key is only used to encrypt one message 

•     encrypted email:     new key generated for every email 

•  No need for nonce    (set to 0) 

Multi use key:   (many time key) 
•  Key used to encrypt multiple messages 

•    files:    same key used to encrypt many files 
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First example: One Time Pad   
(single use key) 

Vernam (1917) 

 

Shannon ‘49:     
n  OTP is “secure” against ciphertext-only attacks 

0 1 0 1 1 1 0 0 0 1 Key: 

1 1 0 0 0 1 1 0 0 0 Plaintext: 
⊕ 

1 0 0 1 1 0 1 0 0 1 Ciphertext: 
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Stream ciphers     (single use key) 

Problem:   OTP key is as long the message 
Solution:    Pseudo random key  --  stream ciphers 

Stream ciphers:  RC4  (126 MB/sec) ,   Salsa20/12 (643 MB/sec) 

key 

PRG  

message ⊕ 

ciphertext 

c ← PRG(k) ⊕ m 



Dangers in using stream ciphers 

    One time key !!         “Two time pad” is insecure: 

  C1  ←  m1  ⊕  PRG(k) 

   C2  ←  m2  ⊕  PRG(k) 
 
Eavesdropper does: 

   C1  ⊕  C2       →        m1 ⊕  m2  

 

Enough redundant information in English that: 

    m1 ⊕  m2 →        m1 ,  m2 



Block ciphers:  crypto work horse 

E, D CT Block 

n Bits 

PT Block 

n Bits 

Key k Bits 

Canonical examples: 

1.  3DES:   n= 64 bits,    k = 168 bits 

2.  AES:     n=128 bits,   k = 128, 192, 256 bits 

IV handled as part of PT block 
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Building a block cipher 
Input:  (m, k) 

 Repeat simple “mixing” operation several times 
 •  DES:  Repeat  16  times: 

 
 
 

 •  AES-128:  Mixing step repeated 10 times 
 
Difficult to design:     must resist subtle attacks 

 •  differential attacks,  linear attacks, brute-force,  … 

mL ← mR 

mR ← mL⊕F(k,mR) 



Block Ciphers Built by Iteration 

R(k,m):    round function 
               for  DES (n=16),      for AES-128  (n=10) 

key  k 

key expansion 

k1 k2 k3 kn 

R(
k 1

, ⋅
) 

R(
k 2

, ⋅
) 

R(
k 3

, ⋅
) 

R(
k n

, ⋅
) 

m c 
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Incorrect use of block ciphers 

Electronic Code Book (ECB): 

Problem:    
n  if    m1=m2     then   c1=c2 

PT: 

CT: 

m1 m2 

c1 c2 
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In pictures 



Correct use of block ciphers I:  CBC mode 

E(k,⋅) E(k,⋅) E(k,⋅) 

m[0] m[1] m[2] m[3] IV 

⊕ ⊕ ⊕ 

E(k,⋅) 

⊕ 

c[0] c[1] c[2] c[3] IV 

ciphertext 

E a secure PRP.        Cipher Block Chaining  with random IV: 

Q: how to do decryption? 



Use cases:   how to choose an IV 

Single use key:        no IV needed     (IV=0) 
 

Multi use key:  (CPA Security) 

Best:  use a fresh random IV for every message      

Can use unique IV  (e.g  counter) 
  but then first step in CBC must be     IV’ ← E(k1,IV) 
  benefit:    may save transmitting  IV  with ciphertext 

1
8 



CBC with Unique IVs 

E(k,⋅) E(k,⋅) E(k,⋅) 

m[0] m[1] m[2] m[3] 

⊕ ⊕ ⊕ 

E(k,⋅) 

⊕ 

c[0] c[1] c[2] c[3] IV 

ciphertext 

IV 

E(k1,⋅) 

IV′ 

unique IV means:    (k,IV)  pair is used for only one message. 
                             generate unpredictable IV’ as E(k1,IV) 
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In pictures 
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Correct use of block ciphers II:   CTR mode 

Counter mode with a random IV:    (parallel encryption) 

m[0] m[1] … 

E(k,IV) E(k,IV+1) … 

m[L] 

E(k,IV+L) 
⊕ 

c[0] c[1] … c[L] 

IV 

IV 

ciphertext 

•    Why are these modes secure?        not today. 



Performance:  Crypto++  5.6.0      [ Wei Dai ] 

Intel Core 2    (on Windows Vista) 

 
  Cipher  Block/key size           Speed   (MB/sec) 

  RC4       126 
  Salsa20/12       643 

  3DES   64/168      10 

  AES/GCM   128/128    102 

   

AES is about 8x faster with AES-NI :   Intel Westmere and onwards 



Data integrity 



Message Integrity:    MACs 

Goal: message integrity.   No confidentiality. 
n  ex:   Protecting public binaries on disk.    
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Alice Bob 

k k Message  m  tag 

Generate tag: 
     tag ← S(k, m) 

Verify tag: 
    V(k, m, tag)  = `yes’ 

? 

note:    non-keyed checksum (CRC) is an insecure MAC  !! 



Secure MACs 
Attacker information: chosen message attack 
n  for m1,m2,…,mq   attacker is given   ti ← S(k,mi) 

Attacker’s goal:   existential forgery. 
n  produce some new valid message/tag pair  (m,t). 

   (m,t)  ∉  { (m1,t1) , … , (mq,tq) } 
 

A secure PRF gives a secure MAC: 
n  S(k,m) = F(k,m) 

n  V(k,m,t): `yes’ if  t = F(k,m) and `no’ otherwise. 



Construction 1:   ECBC 
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Raw CBC 

E(k,⋅) E(k,⋅) E(k,⋅) 

m[0] m[1] m[2] m[3] 

⊕ ⊕ 

E(k,⋅) 

⊕ 

E(k1,⋅) 
tag key = (k, k1) 
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Construction 2:   HMAC  (Hash-MAC) 
Most widely used MAC on the Internet. 

 H:   hash function.       
        example:   SHA-256    ;    output is 256 bits 

Building a MAC out of a hash function: 

   Standardized method:   HMAC 
   S( k, m ) =  H( k⊕opad ||  H( k⊕ipad || m )) 



SHA-256:    Merkle-Damgard 

h(t, m[i]):  compression function 

Thm 1:       if  h is collision resistant then so is  H 

“Thm 2”:     if  h is a PRF then HMAC is a PRF 

h h h 

m[0] m[1] m[2] m[3] 

h IV H(m) 
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Construction 3:  PMAC – parallel MAC 

ECBC and HMAC are sequential.        PMAC: 

m[0] m[1] m[2] m[3] 

⊕ ⊕ ⊕ ⊕ 

F(k,⋅) F(k,⋅) F(k,⋅) F(k,⋅) 

F(k1,⋅) 
tag 

⊕ 

P(k,0) P(k,1) P(k,2) P(k,3) 



Why are these MAC constructions secure? 
… not today –  take CS255 

Why the last encryption step in ECBC? 
n  CBC (aka Raw-CBC)  is not a secure MAC: 

n  Given tag on a message m,  attacker can deduce  
tag for some other message m’ 

n  How:     good crypto exercise … 
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Authenticated Encryption:    
                             Encryption + MAC 



Combining MAC and ENC   (CCA) 

Option 1:  MAC-then-Encrypt (SSL) 
 
 
 

Option 2:  Encrypt-then-MAC (IPsec) 
 
 
 

Option 3:   Encrypt-and-MAC (SSH) 

Msg  M Msg  M MAC 

Enc KE MAC(M,KI) 

Msg  M 

Enc KE 
MAC 

MAC(C, KI) 

Msg  M 

Enc KE 
MAC 

MAC(M, KI) 

Encryption key  KE      MAC key = KI 

Secure for 
all secure 
primitives 



OCB 

 More efficient authenticated encryption  

m[0] m[1] m[2] m[3] 

⊕ ⊕ ⊕ ⊕ 

E(k,⋅) E(k,⋅) E(k,⋅) E(k,⋅) 

P(N,k,0) P(N,k,1) P(N,k,2) P(N,k,3) 

⊕ ⊕ ⊕ ⊕ P(N,k,0) P(N,k,1) P(N,k,2) P(N,k,3) 

c[0] c[1] c[2] c[3] 

checksum 

E(k,⋅) 

⊕ 

⊕ 
c[4] 

P(N,k,0) 

auth 

offset codebook mode 

Rogaway, … 



Public-key Cryptography 



Public key encryption:   (Gen, E, D) 

E D 

pk 

m c c m 

sk 

Gen 



Applications 

Session setup    (for now, only eavesdropping security) 

Non-interactive applications:  (e.g.  Email) 
Bob sends email to Alice encrypted using  pkalice 

Note:   Bob needs  pkalice    (public key management) 

Generate  (pk, sk) 

Alice 

choose random 
x 

(e.g.  48 bytes)  

Bob pk 

E(pk, x) 
x 



Applications 

Encryption in non-interactive settings: 
Encrypted File Systems 

Bob 

write 

E(kF, File) 

E(pkA,  KF) 

E(pkB,  KF) 

Alice 
read 

File 

skA 



Applications 

Encryption in non-interactive settings: 
Key escrow:  data recovery without Bob’s key 

Bob 

write 

E(kF, File) 

E(pkescrow,  KF) 

E(pkB,  KF) 

Escrow 
Service 

skescrow 



Trapdoor functions (TDF) 

Def:   a trapdoor func.  X⟶Y  is a triple of 
efficient algs.   (G, F, F-1) 

•  G(): randomized alg. outputs key pair   (pk,  sk) 

•  F(pk,⋅):   det. alg. that defines a func.    X ⟶ Y 

•  F-1(sk,⋅):    defines a func.    Y ⟶  X    that  
   inverts   F(pk,⋅) 

Security:     F(pk, ⋅)  is  one-way without  sk 



Public-key encryption from TDFs  

•  (G, F, F-1):    secure TDF   X ⟶ Y        

•  (Es, Ds) :   symm. auth. encryption with keys in K 

•  H: X ⟶ K   a hash function 

 

We construct a pub-key enc. system (G, E, D): 

 Key generation G:    same as G for TDF 



Public-key encryption from TDFs  

•  (G, F, F-1):    secure TDF   X ⟶ Y        

•  (Es, Ds) :   symm. auth. encryption with keys in K 

•  H: X ⟶ K   a hash function 

 
E( pk, m) : 

 x ⟵ X,     y ⟵ F(pk, x) 
 k ⟵ H(x),   c ⟵ Es(k, m) 
 output   (y, c) 

D( sk, (y,c) ) : 
 x ⟵ F-1(sk, y), 
 k ⟵ H(x),   m ⟵ Ds(k, c) 
 output   m 

 

R 



In pictures: 
 
 
 

Security Theorem:     

 If  (G, F, F-1)  is a secure TDF,      

 (Es, Ds) provides auth. enc. 

 and   H: X ⟶ K    is a   “random oracle”  

 then   (G,E,D)   is  CCAro  secure. 

F(pk, x) Es( H(x),  m ) 

header body 



Digital Signatures 

Public-key encryption 
n  Alice publishes encryption key 
n  Anyone can send encrypted message 
n  Only Alice can decrypt messages with this key 

Digital signature scheme 
n  Alice publishes key for verifying signatures 
n  Anyone can check a message signed by Alice 
n  Only Alice can send signed messages 



Digital Signatures from TDPs  

(G, F, F-1):    secure TDP   X ⟶ X        

H: M ⟶ X   a hash function 

Security:   existential unforgeability under a chosen message 
  attack  (in the random oracle model) 

 

Sign( sk, m∈X) : 
 output    

     sig =  F-1(sk, H(m) ) 

Verify( pk, m, sig) : 
 output 
 1   if    H(m) = F(pk, sig) 
 0   otherwise 



Public-Key Infrastructure (PKI) 
Anyone can send Bob a secret message 
n  Provided they know Bob’s public key 

How do we know a key belongs to Bob? 
n  If imposter substitutes another key, can read Bob’s mail 

One solution: PKI 
n  Trusted root Certificate Authority (e.g. Symantec) 

w  Everyone must know the verification key of root CA 
w  Check your browser; there are hundreds!! 

n  Root authority signs intermediate CA 
n  Results in a certificate chain 



Back to SSL/TLS 

C 

Version, Crypto choice, nonce 

Version, Choice, nonce, 
Signed certificate 
containing server’s 
public key Ks 

S Secret key K 
encrypted with  
server’s key Ks 

Hash of sequence of messages 

Hash of sequence of messages 

switch to negotiated cipher 

data transmission 



Limitations of cryptography 

Cryptography works when used correctly !! 
 …   but is not the solution to all security problems 
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