
Cryptography Overview

CS155

Cryptography
Is
n  A tremendous tool
n  The basis for many security mechanisms

Is not
n  The solution to all security problems
n  Reliable unless implemented properly
n  Reliable unless used properly
n  Something you should try to invent

or implement yourself

Kerckhoff’s principle

A cryptosystem should be secure
even if everything about the
system, except the secret key,
is public knowledge.

Goal 1:secure communication

Step 1: Session setup to exchange key
Step 2: encrypt data

5

Goal 2: Protected files
Disk

File 1

File 2

Alice Alice

No eavesdropping
No tampering

Analogous to secure communication:
 Alice today sends a message to Alice tomorrow

Symmetric Cryptography

Assumes parties already
share a secret key

Building block: sym. encryption

E, D: cipher k: secret key (e.g. 128 bits)
m, c: plaintext, ciphertext n: nonce (aka IV)

Encryption algorithm is publicly known
•  Never use a proprietary cipher

Alice

E
m, n E(k,m,n)=c

Bob

D
c, n D(k,c,n)=m

k k

nonce

Use Cases

Single use key: (one time key)
•  Key is only used to encrypt one message

•  encrypted email: new key generated for every email

•  No need for nonce (set to 0)

Multi use key: (many time key)
•  Key used to encrypt multiple messages

•  files: same key used to encrypt many files

9

First example: One Time Pad
(single use key)

Vernam (1917)

Shannon ‘49:
n  OTP is “secure” against ciphertext-only attacks

0 1 0 1 1 1 0 0 0 1 Key:

1 1 0 0 0 1 1 0 0 0 Plaintext:
⊕

1 0 0 1 1 0 1 0 0 1 Ciphertext:

1
0

Stream ciphers (single use key)

Problem: OTP key is as long the message
Solution: Pseudo random key -- stream ciphers

Stream ciphers: RC4 (126 MB/sec) , Salsa20/12 (643 MB/sec)

key

PRG

message ⊕

ciphertext

c ← PRG(k) ⊕ m

Dangers in using stream ciphers

 One time key !! “Two time pad” is insecure:

 C1 ← m1 ⊕ PRG(k)

 C2 ← m2 ⊕ PRG(k)

Eavesdropper does:

 C1 ⊕ C2 → m1 ⊕ m2

Enough redundant information in English that:

 m1 ⊕ m2 → m1 , m2

Block ciphers: crypto work horse

E, D CT Block

n Bits

PT Block

n Bits

Key k Bits

Canonical examples:

1.  3DES: n= 64 bits, k = 168 bits

2.  AES: n=128 bits, k = 128, 192, 256 bits

IV handled as part of PT block

1
3

Building a block cipher
Input: (m, k)

 Repeat simple “mixing” operation several times
 • DES: Repeat 16 times:

 • AES-128: Mixing step repeated 10 times

Difficult to design: must resist subtle attacks

 • differential attacks, linear attacks, brute-force, …

mL ← mR

mR ← mL⊕F(k,mR)

Block Ciphers Built by Iteration

R(k,m): round function
 for DES (n=16), for AES-128 (n=10)

key k

key expansion

k1 k2 k3 kn

R(
k 1

, ⋅
)

R(
k 2

, ⋅
)

R(
k 3

, ⋅
)

R(
k n

, ⋅
)

m c

1
5

Incorrect use of block ciphers

Electronic Code Book (ECB):

Problem:
n  if m1=m2 then c1=c2

PT:

CT:

m1 m2

c1 c2

1
6

In pictures

Correct use of block ciphers I: CBC mode

E(k,⋅) E(k,⋅) E(k,⋅)

m[0] m[1] m[2] m[3] IV

⊕ ⊕ ⊕

E(k,⋅)

⊕

c[0] c[1] c[2] c[3] IV

ciphertext

E a secure PRP. Cipher Block Chaining with random IV:

Q: how to do decryption?

Use cases: how to choose an IV

Single use key: no IV needed (IV=0)

Multi use key: (CPA Security)

Best: use a fresh random IV for every message

Can use unique IV (e.g counter)
 but then first step in CBC must be IV’ ← E(k1,IV)
 benefit: may save transmitting IV with ciphertext

1
8

CBC with Unique IVs

E(k,⋅) E(k,⋅) E(k,⋅)

m[0] m[1] m[2] m[3]

⊕ ⊕ ⊕

E(k,⋅)

⊕

c[0] c[1] c[2] c[3] IV

ciphertext

IV

E(k1,⋅)

IV′

unique IV means: (k,IV) pair is used for only one message.
 generate unpredictable IV’ as E(k1,IV)

2
0

In pictures

2
1

Correct use of block ciphers II: CTR mode

Counter mode with a random IV: (parallel encryption)

m[0] m[1] …

E(k,IV) E(k,IV+1) …

m[L]

E(k,IV+L)
⊕

c[0] c[1] … c[L]

IV

IV

ciphertext

•  Why are these modes secure? not today.

Performance: Crypto++ 5.6.0 [Wei Dai]

Intel Core 2 (on Windows Vista)

 Cipher Block/key size Speed (MB/sec)

 RC4 126
 Salsa20/12 643

 3DES 64/168 10

 AES/GCM 128/128 102

AES is about 8x faster with AES-NI : Intel Westmere and onwards

Data integrity

Message Integrity: MACs

Goal: message integrity. No confidentiality.
n  ex: Protecting public binaries on disk.

2
4

Alice Bob

k k Message m tag

Generate tag:
 tag ← S(k, m)

Verify tag:
 V(k, m, tag) = `yes’

?

note: non-keyed checksum (CRC) is an insecure MAC !!

Secure MACs
Attacker information: chosen message attack
n  for m1,m2,…,mq attacker is given ti ← S(k,mi)

Attacker’s goal: existential forgery.
n  produce some new valid message/tag pair (m,t).

 (m,t) ∉ { (m1,t1) , … , (mq,tq) }

A secure PRF gives a secure MAC:
n  S(k,m) = F(k,m)

n  V(k,m,t): `yes’ if t = F(k,m) and `no’ otherwise.

Construction 1: ECBC

2
6

Raw CBC

E(k,⋅) E(k,⋅) E(k,⋅)

m[0] m[1] m[2] m[3]

⊕ ⊕

E(k,⋅)

⊕

E(k1,⋅)
tag key = (k, k1)

2
7

Construction 2: HMAC (Hash-MAC)
Most widely used MAC on the Internet.

 H: hash function.
 example: SHA-256 ; output is 256 bits

Building a MAC out of a hash function:

 Standardized method: HMAC
 S(k, m) = H(k⊕opad || H(k⊕ipad || m))

SHA-256: Merkle-Damgard

h(t, m[i]): compression function

Thm 1: if h is collision resistant then so is H

“Thm 2”: if h is a PRF then HMAC is a PRF

h h h

m[0] m[1] m[2] m[3]

h IV H(m)

2
9

Construction 3: PMAC – parallel MAC

ECBC and HMAC are sequential. PMAC:

m[0] m[1] m[2] m[3]

⊕ ⊕ ⊕ ⊕

F(k,⋅) F(k,⋅) F(k,⋅) F(k,⋅)

F(k1,⋅)
tag

⊕

P(k,0) P(k,1) P(k,2) P(k,3)

Why are these MAC constructions secure?
… not today – take CS255

Why the last encryption step in ECBC?
n  CBC (aka Raw-CBC) is not a secure MAC:

n  Given tag on a message m, attacker can deduce
tag for some other message m’

n  How: good crypto exercise …

3
0

Authenticated Encryption:
 Encryption + MAC

Combining MAC and ENC (CCA)

Option 1: MAC-then-Encrypt (SSL)

Option 2: Encrypt-then-MAC (IPsec)

Option 3: Encrypt-and-MAC (SSH)

Msg M Msg M MAC

Enc KE MAC(M,KI)

Msg M

Enc KE
MAC

MAC(C, KI)

Msg M

Enc KE
MAC

MAC(M, KI)

Encryption key KE MAC key = KI

Secure for
all secure
primitives

OCB

 More efficient authenticated encryption

m[0] m[1] m[2] m[3]

⊕ ⊕ ⊕ ⊕

E(k,⋅) E(k,⋅) E(k,⋅) E(k,⋅)

P(N,k,0) P(N,k,1) P(N,k,2) P(N,k,3)

⊕ ⊕ ⊕ ⊕ P(N,k,0) P(N,k,1) P(N,k,2) P(N,k,3)

c[0] c[1] c[2] c[3]

checksum

E(k,⋅)

⊕

⊕
c[4]

P(N,k,0)

auth

offset codebook mode

Rogaway, …

Public-key Cryptography

Public key encryption: (Gen, E, D)

E D

pk

m c c m

sk

Gen

Applications

Session setup (for now, only eavesdropping security)

Non-interactive applications: (e.g. Email)
Bob sends email to Alice encrypted using pkalice

Note: Bob needs pkalice (public key management)

Generate (pk, sk)

Alice

choose random
x

(e.g. 48 bytes)

Bob pk

E(pk, x)
x

Applications

Encryption in non-interactive settings:
Encrypted File Systems

Bob

write

E(kF, File)

E(pkA, KF)

E(pkB, KF)

Alice
read

File

skA

Applications

Encryption in non-interactive settings:
Key escrow: data recovery without Bob’s key

Bob

write

E(kF, File)

E(pkescrow, KF)

E(pkB, KF)

Escrow
Service

skescrow

Trapdoor functions (TDF)

Def: a trapdoor func. X⟶Y is a triple of
efficient algs. (G, F, F-1)

•  G(): randomized alg. outputs key pair (pk, sk)

•  F(pk,⋅): det. alg. that defines a func. X ⟶ Y

•  F-1(sk,⋅): defines a func. Y ⟶ X that
 inverts F(pk,⋅)

Security: F(pk, ⋅) is one-way without sk

Public-key encryption from TDFs

•  (G, F, F-1): secure TDF X ⟶ Y

•  (Es, Ds) : symm. auth. encryption with keys in K

•  H: X ⟶ K a hash function

We construct a pub-key enc. system (G, E, D):

 Key generation G: same as G for TDF

Public-key encryption from TDFs

•  (G, F, F-1): secure TDF X ⟶ Y

•  (Es, Ds) : symm. auth. encryption with keys in K

•  H: X ⟶ K a hash function

E(pk, m) :

 x ⟵ X, y ⟵ F(pk, x)
 k ⟵ H(x), c ⟵ Es(k, m)
 output (y, c)

D(sk, (y,c)) :
 x ⟵ F-1(sk, y),
 k ⟵ H(x), m ⟵ Ds(k, c)
 output m

R

In pictures:

Security Theorem:

 If (G, F, F-1) is a secure TDF,

 (Es, Ds) provides auth. enc.

 and H: X ⟶ K is a “random oracle”

 then (G,E,D) is CCAro secure.

F(pk, x) Es(H(x), m)

header body

Digital Signatures

Public-key encryption
n  Alice publishes encryption key
n  Anyone can send encrypted message
n  Only Alice can decrypt messages with this key

Digital signature scheme
n  Alice publishes key for verifying signatures
n  Anyone can check a message signed by Alice
n  Only Alice can send signed messages

Digital Signatures from TDPs

(G, F, F-1): secure TDP X ⟶ X

H: M ⟶ X a hash function

Security: existential unforgeability under a chosen message
 attack (in the random oracle model)

Sign(sk, m∈X) :
 output

 sig = F-1(sk, H(m))

Verify(pk, m, sig) :
 output
 1 if H(m) = F(pk, sig)
 0 otherwise

Public-Key Infrastructure (PKI)
Anyone can send Bob a secret message
n  Provided they know Bob’s public key

How do we know a key belongs to Bob?
n  If imposter substitutes another key, can read Bob’s mail

One solution: PKI
n  Trusted root Certificate Authority (e.g. Symantec)

w  Everyone must know the verification key of root CA
w  Check your browser; there are hundreds!!

n  Root authority signs intermediate CA
n  Results in a certificate chain

Back to SSL/TLS

C

Version, Crypto choice, nonce

Version, Choice, nonce,
Signed certificate
containing server’s
public key Ks

S Secret key K
encrypted with
server’s key Ks

Hash of sequence of messages

Hash of sequence of messages

switch to negotiated cipher

data transmission

Limitations of cryptography

Cryptography works when used correctly !!
 … but is not the solution to all security problems

XKCD 538

