CS5-155 Spring 2016

Browser code isolation

John Mitchell

/4

Modern web sites are complex

|
NG

\ n
® 00 J & New York Region News - ... \E e

(‘ M D waw nytimes.com/pages/myregion/index. mmiPmodule=HPMiniNavEcontentCo
N

rpe=Momepagefregion=TopBardaction=click&t (5 - v @' o |

= Q TheNeworkTimes N.Y. / Region B2 < o

ma.-_ - Leass a 2014 Golf TDI for -
edanbieselbvent @
- %59, o ©

Dlhiraiabl SERRAMONTE VOLKSWAGEN wumnso Down

wction=New Yorkapg

In New York, Hard Choices on Health
Exchange Spell Success

EMONA HARTOCOLLIS 4% Nisutas Ago

@NYTMETRO O TWITTER

oz, Twitter ist of Sta¥ jounalicts »

VIDEO » Mare New York Videss »

SCE STRZET

An Artist Takes His Pay in
Coffee and Community

By DAVID CONZALEZ

David Klis, whoee other woek ofton
fetches tens of tbousands of dollars,
Is glving hack to his nefghborhood
by painting a large mural in a
bodega in Fort Gresne, Brookhm.

« Nove Sida Sreer Columrg >

K » B
BIG CITY BOOK CLUB
FARSHON

y; K3 Porcsl 'n-\ vm!:- wood ;r»;u.,sn(su-n X068 8nd Q01 an EXG 81 & 8 H,,,,L“:,,-. l‘% kl lntemction: E.Imhuj’st Style Ease
daoctors appcintmant. Har copay waa §T! today =2 L DPTo0 yn . . o
More than 400,000 residents signed up for health plans, and dostinatica foe SIES ? ;‘:‘:m}?—mnf nmg]m]orimud of Hmburs, Jocsls e to
premiums have dropped, though the state limited consumers’ “l‘ﬁ‘;‘"‘“ R P Tl syl casuel

wealthy

choices.

creative types,

Modern web "“site”

D
¥

Page code Ad code

Extensions

Third-party G

libraries

N.Y. / Region

Lecse o 20U Golf T dor

L

Third-party APIs

anDiesel $989, g @ '
. SUAFAMONT L POLRSWA LEN fr 36 et) l';‘:wh Do Ao
hal On s B /

.

oioes,

Code from many sources e -;:.Q:‘i-,:; ot

Combined in many ways

Bywoa
e on

Intersection: Ednhunst Style Ease

10 the Quewsas saighietiond of Berbura, ucals ke 3
boep their style ool

Sites handle sensitive information

N

L/

Financial data
= Online banking, tax filing, shopping, budgeting, ...
Health data
= Genomics, prescriptions, ...
Personal data
= Email, messaging, affiliations, ...

Goal: prevent malicious web content from stealing
information.

Basic questions

N

L/

4 How do we isolate code from different sources
= Protecting sensitive information in browser
= Ensuring some form of integrity
= Allowing modern functionality, flexible interaction

Third-party APls Third-party mashups
New password- sssssssssssssssasssas - et's get started. CZP';;}—(}{e
——
3/ — it
— Tt Extensions
. jauery |~
- ,,l”....m coners A= = o
et oo . 5 = :~ J OE';E_ —_
L ———— — S == _ -
Third-party libraries

More specifically

N

L/

4 How do we protect page from ads/services?

4 How to share data with cross-origin page?

4 How to protect one user from another’s content?
4 How do we protect the page from a library?

4 How do we protect page from CDN?

&

Recall Same-Origin Policy (SOP)

N

L/

Idea: Isolate content from different origins
= Restricts interaction between compartments
= Restricts network request and response

c.com a.com b.com

Recall Same-Origin Policy (sop)

N

%

Recall Same-Origin Policy (sop)

N

L/

enn Mozilla Frefax - Vimperatoe -
4 o RS E AR AN - BTSN
pos essage
\ 7 S s 8

c.com a.com b.com

Recall Same-Origin Policy (sop)

N

L/
postM g]
.\! i \ L | D S
c.com et a.com b.com

XmlHttpRequest follows same-origin policy

Recall Same-Origin Policy (sop)

N
(¥

Mozilla Frefox - Vimperatoe

-- -
.......
- - -

Same-origin policy summary

N

L/

Isolate content from different origins
= E.g., can’t access document of cross-origin page
= E.g., can't inspect responses from cross-origin

B-ca)ld &) B - -
1’ DOM access

postMessage

JSON @ a.com

Example:Library === jQuerv

N

L/

Library included using tag Third-party libraries
= <script src="jquery.js"></script>
4 No isolation
= Runs in same frame, same origin as rest of page
4 May contain arbitrary code
= Library developer errors or malicious trojan horse
= Can redefine core features of JavaScript
= May violate developer invariants, assumptions

jQuery used by 78% of the Quantcast top 10,000 sites, over 59% of the top million

Second example: advertisement

4 <script src="https://adpublisher.com/ad1.js"></script>
<script src="https://adpublisher.com/ad2.js"> </script>

| | | | I &

Read password using the DOM API e E———
var ¢ = document.getElementsByName(“password”)[Q] e roroestsomee

Fabulous

Directly embedded third-party
JavaScript poses a threat to critical
hosting page resources

Send it to evil location (not subject to SOP)

 Cupaleniivgiil

14

Second example: Ad vs Ad

<script src="http://adpublisher.com/ad1.js"> </script>

ﬁjﬁ <script src="http://adpublisher.com/ad2.js"> </script>

Sort news by: Recently Popular | | | | |

Fabulous

Directly embedded third-party
JavaScript poses a threat to other
third-party components

Attack the other ad: Change the price !
var a = document.getElementById(“sonyAd”)
a.innerHTML = “$1 Buy NOW"; SHOP NOW @

www.shoppersstop.com

BREC 1 Buy N
= ®. $ u OW INDIANTAGS is social news submiting
site.vote for be i

Same-Origin Policy

N

L/

4 Limitations:

= Some DOM objects leak data
» Image size can leak whether user logged in

= Data exfiltration is trivial
» Can send data in image request
* Any XHR request can contain data from page

= Cross-origin scripts run with privilege of page
+» Injected scripts can corrupt and leak user data!

In some ways, too strict

N

L/

Can't read cross-origin responses
= What if we want to fetch data from provider.com?
= JSONP

» To fetch data, insert new script tag:
<script src="https://provider.com/getData?cb=f">
</script>

+ To share data, reply back with script wrapping
data: f({...data...})

4 Why is this dangerous?
= Provider data can easily be leaked (CSRF)
= Page is not protected from provider (XSS)

Goal: Password-strength checker

N

L/

New password- see Pascword strength: Strong

b.ru/chk.html

a.com

Strength checker can run in a separate frame
= Communicate by postMessage
= But we give password to untrusted code!

Is there any way to make sure untrusted code does
not export our password?

Useful concept: browsing context

N

L/
@ A browsing context may be

= A frame with its DOM
= A web worker (thread), which does not have a DOM
@ Every browsing context
= Has an origin, determined by protocol, host, port#
= Is isolated from others by same-origin policy
= May communicate to others using postMessage
= Can make network requests using XHR or tags (<image>, ...)

r N1 N 4 N B N
Process 1 I Process 2 Tab 1 I Tab 2
i |
0 |
skype [keypassx weather.it 1 bank.ch
\ J B Y, _ J B V,
Filesystem Cookies/HTMLS local storage

Modern Structuring Mechanisms

m) HTMLS iframe Sandbox
= Load with unique origin, limited privileges
Content Security Policy (CSP)

= Whitelist instructing browser to only execute or
render resources from specific sources

® HTML5 Web Workers

= Separate thread; isolated but same origin

= Not originally intended for security, but helps
@ SubResource integrity (SRI)
@ Cross-Origin Resource Sharing (CORS)

= Relax same-origin restrictions

HTML5 Sandbox

N

L/

#® Idea: restrict frame actions

= Directive sandbox
ensures iframe has unique
origin and cannot execute
JavaScript

a.com

a.com

= Directive sandbox allow-scripts

ensures iframe has unique
origin

a.com

a.com

HTML5 Sandbox

N

L/

Idea: restrict frame actions
= Directive sandbox
ensures iframe has unique
origin and cannot execute
JavaScript

a.com

= Directive sandbox allow-scripts
ensures iframe has unique
origin

a.com

a.com

HTML5 Sandbox

N

L/

Idea: restrict frame actions
= Directive sandbox
ensures iframe has unique
origin and cannot execute
JavaScript

a.com

= Directive sandbox allow-scripts
ensures iframe has unique
origin

a.com

Sandbox example

N

L/

< Twitter button in iframe

<iframe src=
"https://platform.twitter.com/widgets/tweet_button.html"
style="border: 0; width:130px; height:20px;"> </iframe>

4 Sandbox: remove all permissions and then allow
JavaScript, popups, form submission, and twitter.com
cookies

<iframe sandbox="allow-same-origin allow-scripts allow-popups

allow-forms"

src="https://platform.twitter.com/widgets/tweet_button.html|"
style="border: 0; width:130px; height:20px;"></iframe>

Sandbox permissions

N

L/

< allow-forms allows form submission

4 allow-popups allows
4 allow-pointer-lock a
4 allow-same-origin a

DOPUPS
lows pointer lock (mouse moves)
lows the document to maintain

its origin; pages loaded

from https://example.com/ will

retain access to that origin’s data.

allow-scripts allows JavaScript execution, and also
allows features to trigger automatically (as they'd be

trivial to implement via

JavasScript)

4 allow-top-navigation allows the document to break
out of the frame by navigating the top-level window

http://www.html5rocks.com/en/tutorials/security/sandboxed-iframes/

Modern Structuring Mechanisms

N

L/

@ HTMLS5 iframe Sandbox
= Load with unique origin, limited privileges
Content Security Policy (CSP)

= Whitelist instructing browser to only execute or
render resources from specific sources

® HTML5 Web Workers

= Separate thread; isolated but same origin

= Not originally intended for security, but helps
@ SubResource integrity (SRI)
@ Cross-Origin Resource Sharing (CORS)

= Relax same-origin restrictions

Content Security Policy (CSP)

N

L/

Goal: prevent and limit damage of XSS

= XSS attacks bypass the same origin policy by
tricking a site into delivering malicious code along
with intended content

4 Approach: restrict resource loading to a white-list

= Prohibits inline scripts embedded in script tags,
inline event handlers and javascript: URLS

= Disable JavaScript eval(), new Function(), ...

= Content-Security-Policy HTTP header allows site
to create whitelist, instructs the browser to only
execute or render resources from those sources

http://www.html5rocks.com/en/tutorials/security/content-security-policy/

Content Security Policy (CSP)

N

L/

Goal: prevent and limit damage of XSS attacks
4 Approach: restrict resource loading to a white-list
= E.qg., default-src ‘self’ http://b.com; img-src *

c.com a.com

Content Security Policy (CSP)

N

L/

Goal: prevent and limit damage of XSS attacks
4 Approach: restrict resource loading to a white-list
= E.qg., default-src ‘self’ http://b.com; img-src *

c.com a.com b.com

Content Security Policy (CSP)

N

L/

Goal: prevent and limit damage of XSS attacks
4 Approach: restrict resource loading to a white-list
= E.qg., default-src ‘self’ http://b.com; img-src *

c.com a.com

Content Security Policy (CSP)

N

L/

Goal: prevent and limit damage of XSS attacks
4 Approach: restrict resource loading to a white-list
= E.qg., default-src ‘self’ http://b.com; img-src *

c.com JSON a.com

Content Security Policy (CSP)

N

L/

Goal: prevent and limit damage of XSS attacks
4 Approach: restrict resource loading to a white-list
= E.qg., default-src ‘self’ http://b.com; img-src *

Content Security Policy (CSP)

N

L/

Goal: prevent and limit damage of XSS attacks
4 Approach: restrict resource loading to a white-list
= E.qg., default-src ‘self’ http://b.com; img-src *

Content Security Policy (CSP)

N

L/

Goal: prevent and limit damage of XSS attacks
4 Approach: restrict resource loading to a white-list
= E.qg., default-src ‘self’ http://b.com; img-src *

Content Security Policy & Sandboxing

N

L/

4 Limitations:
= Data exfiltration is only partly contained

» Can leak to origins we can load resources from
and sibling frames or child Workers (via
postMessage)

= Scripts still run with privilege of page
+ Can we reason about security of jQuery-sized lib?

CSP resource directives

N

L/

@ script-src limits the origins for loading scripts

4 connect-src limits the origins to which you can
connect (via XHR, WebSockets, and EventSource).

@ font-src specifies the origins that can serve web fonts.
frame-src lists origins can be embedded as frames

4 img-src lists origins from which images can be loaded.
#® media-src restricts the origins for video and audio.

object-src allows control over Flash, other plugins

style-src is script-src counterpart for stylesheets

@ default-src define the defaults for any directive not
otherwise specified

CSP source lists

D

! @ Specify by scheme, e.qg., https:
4 Host name, matching any origin on that host
@ Fully qualified URI, e.g., https://example.com:443
Wildcards accepted, only as scheme, port, or in the

leftmost position of the hostname:
4 'none’ matches nothing
'self' matches the current origin, but not subdomains
'unsafe-inline' allows inline JavaScript and CSS

¢ 'unsafe-eval' allows text-to-JavaScript mechanisms
like eval

Modern Structuring Mechanisms

N

L/

@ HTMLS5 iframe Sandbox
= Load with unique origin, limited privileges
Content Security Policy (CSP)
= Whitelist instructing browser to only execute or

render resources from specific sources
mp HTMLS5 Web Workers
= Separate thread; isolated but same origin
= Not originally intended for security, but helps
@ SubResource integrity (SRI)
@ Cross-Origin Resource Sharing (CORS)
= Relax same-origin restrictions

http://www.html5rocks.com/en/tutorials/workers/basics/

Web Worker

L/

N

4 Run in an isolated thread, loaded from separate file

var worker = new Worker('task.js'");
worker.postMessage(); // Start the worker.

4 Same origin as frame that creates it, but no DOM
4% Communicate using postMessage

var worker = new Worker(‘doWork.js');

_ worker.addEventListener('message’, function(e) {
main console.log('Worker said: ', e.data);

thread }’ false);

worker.postMessage('Hello World'); // Send data to worker

self.addEventListener('message’, function(e) {
doWork self.postMessage(e.data); // Return message it is sent
}, false);

Modern Structuring Mechanisms

N

L/

@ HTMLS5 iframe Sandbox
= Load with unique origin, limited privileges
Content Security Policy (CSP)

= Whitelist instructing browser to only execute or
render resources from specific sources

® HTML5 Web Workers
= Separate thread; isolated but same origin
= Not originally intended for security, but helps
mp SubResource integrity (SRI)
@ Cross-Origin Resource Sharing (CORS)
= Relax same-origin restrictions

Motivation for SRI

N

L/

Many pages pull scripts and styles from a wide variety
of services and content delivery networks.

4 How can we protect against

= downloading content from a hostile server
(via DNS poisoning, or other such means), or

= modified file on the Content Delivery Network (CDN)

jQuery.com compromised to serve malware via
drive-by download

€ Won't using HTTPS address this problem?

Subresource integrity

N

L/

Idea: page author specifies hash of (sub)resource they
are loading; browser checks integrity

= E.g., integrity for scripts

» <link rel="stylesheet"
href="https://site53.cdn.net/style.css"
integrity="sha256-SDfwewFAE...wefjijfE" >

= E.qg., integrity for link elements
» <script src="https://code.jquery.com/jquery-
1.10.2.min.js" integrity="sha256-

C6CBOUYISOUJeqinPHWTHVgh/E1uhG5Tw+Y5qgF
QmYg=">

What happens when check fails?

N

@ Case 1 (default):

= Browser reports violation and does not render/
execute resource

@ Case 2: CSP directive with integrity-policy directive set
to report

= Browser reports violation, but may render/execute
resource

Multiple hash algorithms

N

L/

4 Authors may specify multiple hashes

E.g.,
<script src="hello_world.js"
integrity="sha256-...
sha512-...
"> < /script>

Browser uses strongest algorithm
® Why support multiple algorithms?

Modern Structuring Mechanisms

N

L/

@ HTMLS5 iframe Sandbox
= Load with unique origin, limited privileges
Content Security Policy (CSP)
= Whitelist instructing browser to only execute or

render resources from specific sources
® HTML5 Web Workers
= Separate thread; isolated but same origin
= Not originally intended for security, but helps
@ SubResource integrity (SRI)
#Cross-Origin Resource Sharing (CORS)
= Relax same-origin restrictions

Cross-Origin Resource Sharing (CORS)

N

L/

4 Amazon has multiple domains
= E.g., amazon.com and aws.com

Problem: amazon.com can’t read cross-origin aws.com
= With CORS amazon.com can whitelist aws.com

' aws.com

?l&)‘% |

amazon.com evil.biz

http://www.html5rocks.com/en/tutorials/cors/

How CORS works

N

L/

@ Browser sends Origin header with XHR request
= E.g., Origin: https://amazon.com

@ Server can inspect Origin header and respond with
Access-Control-Allow-Origin header

s E.g., Access-Control-Allow-Origin:
https://amazon.com

s E.g., Access-Control-Allow-Origin: *

Modern Structuring Mechanisms

N

L/

@ HTMLS5 iframe Sandbox
= Load with unique origin, limited privileges
Content Security Policy (CSP)

= Whitelist instructing browser to only execute or
render resources from specific sources

® HTML5 Web Workers

= Separate thread; isolated but same origin

= Not originally intended for security, but helps
@ SubResource integrity (SRI)
@ Cross-Origin Resource Sharing (CORS)

= Relax same-origin restrictions

Recall: Password-strength checker

N

L/

New password- see Pascword strength: Strong

b.ru/chk.html

a.com

Strength checker can run in a separate frame
= Communicate by postMessage
= But we give password to untrusted code!

Is there any way to make sure untrusted code does
not export our password?

Confining the checker with COWL

D

%

@ Express sensitivity of data

= Checker can only receive password if its context
label is as sensitive as the password

@ Use postMessage API to send password
= Source specifies sensitivity of data at time of send

postMessage({pass: ...}, “b.ru” , Label(“a.com™))
11 -
V Py
[X 1] *

............ N

{pass: ...}
b.ru/chk.html

Modern web site

D
¥

Page code Ad code Extensions

Third-party g Al
libraries '

l'r
= o sk N.Y./ Region ==y B3 — o

Lecse o0 20U Golf T for

anDieselFant $989 g @
fmo
. B e T B
. o '}

Third-party APIs

.

o o
An Artist Taoes His Pay 1n
Caliee aond Commonan ity

Byoa3

Intarsextion: Elenhurst Style Ease

- Sk
) o . Inthe Q seightxetond of Errbur, ks ke
Moo thon 500,000 swekdents dgaad =p dor bedtt plaze ard it ot Queves reighiveSood of Brbuea, oedc Hhe
* boep thedr styde cownld

poerbare hiwve dropped, though thae stane lrdiad coosarses’
Aoioes,

Code from many sources
Combined in many ways

Challenges

N

L/

New password-

write less. do mor
At thet. & verla s TR IO PR tased on your T
cradtwortsines
e
re peraity e,
re e boe... ever

Third-party APls

Password strength-
I

Strong

Third-party libraries

°
L4
°
0
®

Third-party mashups

et's get started. e !f}fe

1 Find you nk User name

Password
2/ Connect it to Mint. —
-

L —

Extensions

o ——
A vars e S —
P e —
——y o S———
~—~— TV G 343
RS
e
—— [
B e — o
e
v

Basic questions

N

L/

4 How do we isolate code from different sources
= Protecting sensitive information in browser
= Ensuring some form of integrity
= Allowing modern functionality, flexible interaction

Third-party APls Third-party mashups
New password- sssssssssssssssasssas - et's get started. CZP';;}—(}{e
——
3/ — it
— Tt Extensions
. jauery |~
- ,,l”....m coners A= = o
et oo . 5 = :~ J OE';E_ —_
L ———— — S == _ -
Third-party libraries

Acting parties on a site

N

L/

@ Page developer

Library developers

Service providers

Data provides

Ad providers

Other users

4 CDNs

@ Extension developers

Specifically

N

L/

4 How do we protect page from ads/services?

4 How to share data with cross-origin page?

4 How to protect one user from another’s content?
4 How do we protect the page from a library?

4 How do we protect page from CDN?

&

