
CS155 Project 2

Web Security

Released: April 27, 2017

Part 1: due May 11th
Part 2: due May 18th

1 Introduction

In this project, you will gain experience implementing and defending against web attacks.
You are given the source code for a banking web application written in Ruby on Rails. In
Part 1 of this project, you will implement a variety of attacks. In Part 2, you will modify
the Rails application to defend against the attacks from Part 1.

The web application lets users manage bitbars, a new cryptocurrency. Each user is given
200 bitbars when they register for the site. They can transfer bitbars to other users using
an intuitive web interface, as well as create and view user profiles.

You have been given the source code for the bitbar application. Real web attackers
generally would not have access to the source code of the target website’s server, but having
the source might make finding the vulnerabilities a bit easier. You should not change
any of the Rails source code until Part 2.

2 Resources

The old version of CS142, Stanford’s web programming class, has a variety of useful materials
posted online for Ruby on Rails. (Although it recently switched to the Javascript MEAN
stack). You may find the following handy:

• Notes/Slides:
http://web.stanford.edu/~ouster/cgi-bin/cs142-winter15/lectures.php

• Commands:
http://web.stanford.edu/~ouster/cgi-bin/cs142-winter15/railsCommands.php

• Installation:
http://web.stanford.edu/~ouster/cgi-bin/cs142-winter15/railsInstall.php

Note that CS142 covers these technologies in far greater depth than this project requires.
In addition, here are some other resources you may find helpful:

1

http://web.stanford.edu/~ouster/cgi-bin/cs142-winter15/lectures.php
http://web.stanford.edu/~ouster/cgi-bin/cs142-winter15/railsCommands.php
http://web.stanford.edu/~ouster/cgi-bin/cs142-winter15/railsInstall.php


• HTML, CSS, JavaScript
http://www.w3schools.com/

• Ruby and Ruby on Rails
http://guides.rubyonrails.org/index.html

http://api.rubyonrails.org/

http://ruby-doc.org/

• AJAX
http://openjs.com/articles/ajax_xmlhttp_using_post.php

• XSS
http://crypto.stanford.edu/cs155/papers/CSS.pdf

https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet

• SQL
http://www.w3schools.com/sql/

http://rails-sqli.org/

• Clickjacking Attacks and Defense
http://seclab.stanford.edu/websec/framebusting/framebust.pdf

http://media.blackhat.com/bh-eu-10/presentations/Stone/BlackHat-EU-2010-Stone-Next-Generation-Clickjacking-slides

• No Explanation Needed
http://stackoverflow.com/

3 Setup Instructions

The Bitbar application can be run locally on your machine (using Ruby 2.4 and Rails 5.0.2).
When the server is running, the site should be accessible at the URL http://localhost:

3000. We have provided a virtual machine with the starter code and the right version of
Rails installed. Although it is not mandatory, we strongly recommend that you use this to
sanity check your code – this is the environment that the graders will be using.

Note also we will grade using the latest version of Chrome, and so we recommend you
test your attacks in this browser so as to be safe.

Detailed setup instructions:

1. Install Ruby 2.4 and Rails 5.0.2. See the following page for instructions (you may
skip the MySQL and PostgreSQL parts). Be sure to replace the Rails version ”5.0.1”
with ”5.0.2” in the instructions. It is very important that you run the correct
version of Rails.
https://gorails.com/setup/ubuntu/16.04

2. Download and extract the starter code from the CS155 website.

3. Navigate to the bitbar directory of the starter code. This is the root directory of the
Rails app.

4. To install the Rails plugins you will need, run bundle install.

5. To start a server, run the following command on a terminal in your bitbar directory:

2

http://www.w3schools.com/
http://guides.rubyonrails.org/index.html
http://api.rubyonrails.org/
http://ruby-doc.org/
http://openjs.com/articles/ajax_xmlhttp_using_post.php
http://crypto.stanford.edu/cs155/papers/CSS.pdf
https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet
http://www.w3schools.com/sql/
http://rails-sqli.org/
http://seclab.stanford.edu/websec/framebusting/framebust.pdf
http://media.blackhat.com/bh-eu-10/presentations/Stone/BlackHat-EU-2010-Stone-Next-Generation-Clickjacking-slides
http://stackoverflow.com/
http://localhost:3000
http://localhost:3000
https://gorails.com/setup/ubuntu/16.04


rails server

This will make the bitbar application available in your browser at the URL http:

//localhost:3000. You can close the server by pressing Ctrl + C in the terminal.
Note that you do NOT need to restart the server every time you make a change to
the Rails source; the running Rails server will automatically update the website when
you make a change to the source code. (There are a handful of exceptions to this – if
you change some specific static files, you might need to restart the server.)

4 Part 1: Attacks

For the first part of the project, you will write a series of attacks against the Bitbar appli-
cation. In each exercise, we describe what inputs you will need to provide to the grader,
and what specific actions the grader will take using your input. At the end of this, the
desired result described in the exercise should be obtained in order for you to receive credit.
All of your attacks can assume that the site is accessible at the url http://localhost:3000.

You may not use any external libraries. In particular, this means no jQuery.

You may use online resources, but please cite them in a file called README.txt inside
your attacks directory.

4.1 Warm-Up Exercise: Cookie Theft

• Your solution is a URL starting with

http://localhost:3000/profile?username=

• The grader will already be logged in to Bitbar as user1 before loading your URL, and
will be on the Profile tab.

• Your goal is to steal the user’s bitbar session cookie and send it to

http://localhost:3000/steal_cookie?cookie=...cookie data here...

• You can view the most recently stolen cookie using this page:
http://localhost:3000/view_stolen_cookie

• The attack should not be visibly obvious to the user. Except for the browser location
bar (which can be different), the grader should see a page that looks as it normally
does when the grader visits their profile page. No changes to the site’s appearance
or extraneous text should be visible. Avoiding the blue warning text stating that a
user is not found is an important part of the attack. It is fine if the number of bitbars
displayed or the contents of the profile are not correct (so long as they look “normal”).
It’s also fine if the page looks weird briefly before correcting itself.

• Put your final answer in a file named warmup.txt.

• Hint: try adding things random text to the end of the URL. How does this change the
HTML source code loaded by the browser?

3

http://localhost:3000
http://localhost:3000
http://localhost:3000
http://localhost:3000/view_stolen_cookie


4.2 Attack A: Session Hijacking with Cookies

• In this attack, you will have the login credentials of the user attacker, and try to
impersonate user1, who has a user id of 1. The password for the user attacker is
also attacker.

• Your solution is a script that when executed will output to the console a line of
Javascript that can be copied and pasted into the JavaScript console to trick the web
application into thinking you are logged in as user1. The grader will run your solution
(as ./a.sh), copy the line to the browser console, and verify that you are now logged
in as user1.

• You are required to use Mechanize, a Ruby library that can be used for automating
interaction with websites, for this attack. You must preserve all cookie values sent by
the server except for the one you modify.

• Put your final answer in a script of the form a.sh. This script can call one or more
other scripts in the submission directory as needed.

• Hint: How does the site store its sessions? How does the site verify which user is
currently logged in? How does the site verify the integrity of its cookies?

4.3 Attack B: Cross-Site Request Forgery

• Your solution is a short HTML document named b.html that the grader will open
using the web browser.

• The grader will already be logged in to Bitbar before loading your page.

• Transfer 10 bitbars from the grader’s account to the “attacker” account. As soon as
the transfer is complete, the browser should redirect to http://crypto.stanford.

edu/cs155/ (so fast the user might not notice).

• You can view the list of all users and how many bitbars they have using this page:
http://localhost:3000/view_users

• The location bar of the browser should not contain localhost:3000 at any point.

• You may edit the session, but you may not directly edit the cookie.

4.4 Attack B+: Cross-Site Request Forgery With User Assistance

• Your solution is one or two HTML documents named bp.html and (optionally) bp2.html.
The grader will open bp.html using the web browser.

• The grader will already be logged in to Bitbar before loading your page.

• The grader will interact with the web page in a way that is reasonable. This means
that if there is a form and/or a button on the web page, and some instructions telling
the grader what to enter into the fields, the grader will follow the instructions. The
same goes for any other interaction on the page.

4

http://crypto.stanford.edu/cs155/
http://crypto.stanford.edu/cs155/
http://localhost:3000/view_users


• After interacting with the page, 10 bitbars should be transferred from the grader’s
account to the “attacker” account. As soon as the transfer is complete the browser
should be redirected to http://crypto.stanford.edu/cs155/.

• Your attack must work by involving user interaction (i.e. do NOT just do another
CSRF attack against post transfer). In particular, you attack must target the page
http://localhost:3000/super_secure_transfer and/or http://localhost:3000/
super_secure_post_transfer, which have a weak CSRF protection implemented.
You may NOT directly call http://localhost:3000/transfer or http://localhost:
3000/post_transfer in any way for this attack.

• It should not be obvious that your page is loading content from http://localhost:3000.

• There is some basic framebusting code that protects the application from this sort of
attack. You must come up with a way of bypassing this defense. You may NOT use
the disable fb=yes parameter.

• Make sure to test your page layout in the virtual machine with default settings.

4.5 Attack C: Little Bobby Tables (aka SQL Injection)

• Your solution is a malicious username that allows you to close an account that you do
not have login access to.

• The grader will create a new user account with your provided username, click on
”Close” and then confirm that he/she wants to close the current account.

• As a result user3 should be deleted from the database. The new user account should
also be deleted to leave no trace of the attack behind. All other accounts should
remain.

• You can view the list of all active accounts using this page: http://localhost:

3000/view_users

• If you mess up your user database while working on the problem, stop Rails and run
rake db:reset to reset your database.

• Put your final answer in a file named c.txt.

• Hint: Read up on SQL injections and the WHERE clause.

4.6 Attack D: Profile Worm

• Your solution is a profile that, when viewed, transfers 1 bitbar from the current user
to the user called attacker and replaces the profile of the current user with itself.
Thus, if the attacker user changes their profile to whatever you provide in your
solution, the following will happen: if user1 views attacker’s profile, 1 bitbar will be
transferred from user1 to attacker, and user1’s profile will be replaced with your
solution profile. Later, if user2 views user1’s profile, then 1 bitbar will be transferred
from user2 to attacker, and user2’s profile will be replaced as well. Thus, your
profile worm can very quickly spread to all user profiles.

5

http://crypto.stanford.edu/cs155/
http://localhost:3000/super_secure_transfer
http://localhost:3000/super_secure_post_transfer
http://localhost:3000/super_secure_post_transfer
http://localhost:3000/transfer
http://localhost:3000/post_transfer
http://localhost:3000/post_transfer
http://localhost:3000/view_users
http://localhost:3000/view_users


• Submit a file named d.txt containing your malicious profile.

• Your malicious profile should include a witty message to the grader (to make grading
a bit easier).

• To grade your attack, we will cut and paste the submitted profile into the profile of
the “attacker” user and view that profile using the grader’s account. We will then
view the copied profile with more accounts, checking for the transfer and replication.

• The transfer and application should be reasonably quick (under 15 seconds). During
that time, the grader will not click anywhere.

• During the transfer and replication process, the browser’s location bar should remain
at: http://localhost:3000/profile?username=x where x is the user whose profile
is being viewed. The visitor should not see any extra graphical user interface elements
(e.g. frames), and the user whose profile is being viewed should appear to have 10
bitbars.

• You will not be graded on the corner case where the user viewing the profile has no
bitbars to send.

• Hint: The site allows a sanitized subset of HTML in profiles, but you can get around
it. The MySpace vulnerability may provide some inspiration.

4.7 Attack E (Extra Credit): Password Theft

• Your solution is an HTML document named e.html that the grader will open using
the web browser.

• The grader will not be logged in to Bitbar before loading your page.

• Upon loading your document, the grader should be immediately redirected to http:

//localhost:3000/login. The grader will enter a username and password and press
the “Log in” button.

• When the “Log in” button is pressed, steal the username and password by mak-
ing a HTTP POST request to http://localhost:3000/steallogin?username=..

.&password=... (insert the correct username and password).

• You can view the most recently stolen username and password by going to:
http://localhost:3000/view_stolen_login

• The login form should appear perfectly normal to the user. No extraneous text (e.g.
warnings) should be visible, and assuming the username and password are correct the
login should proceed the same way it always does.

• Hint: The site uses Rail’s built-in escaping mechanism to escape the username, but
something isn’t quite right ...

6

http://localhost:3000/profile?username=x
http://localhost: 3000/login
http://localhost: 3000/login
http://localhost:3000/steal login?username=. . . &password=. . .
http://localhost:3000/steal login?username=. . . &password=. . .
http://localhost:3000/view_stolen_login


4.8 Race conditions

Beware of Race Conditions: Depending on how you write your code, all of these attacks
could potentially have race conditions that affect the success of your attacks. Attacks that
fail on the grader’s browser during grading will receive less than full credit. To ensure that
you receive full credit, you should wait after making an outbound network request rather
than assuming that the request will be sent immediately.

4.9 Submission

• Create files named warmup.txt, a.sh (along with any relevant scripts), b.html,

bp.html (and optionally bp2.html), c.txt, d.txt, and e.html (if you did the ex-
tra credit) containing your attacks. Please do not submit an e.html if you did not
implement the attack.

• Create a file called README.txt inside the attacks directory which cites the online
references you used, as well as any special notes for the grader.

• Create a file named ID.csv in the attacks/ directory with a comma-separated line for
each group member with your SUID number, Leland username, last name, first name
(order matters).

• Run the following command from the project root directory to generate the submission
tarball submission part1.tar.gz: make submission1

• Upload the submission tarball to a Stanford machine (i.e. Myth or Corn)

• To submit, run the following command from the directory containing the tarball:

/usr/class/cs155/bin/submit proj2_part1

• Follow the on-screen instructions

• You can check whether we have received your submission by going into
/usr/class/cs155/submissions/proj2 part1/

5 Part 2: Defenses

For this part, you should modify the Bitbar application to defend against the six attacks
from Part 1. You must defend against Attack E even if you did not do the extra credit in
the first part. (After the hard deadline for part 1, we will provide an explanation of Attack
E so that you can defend against it even if you didn’t implement it for part 1.) There might
be more than one way of implementing the attacks, so think about other possible attack
methods – you will need to defend against all of them.

Do not change the site’s appearance or behavior on normal inputs. A non-malicious user
should not notice anything different about your modified site.

7



When presented with bad inputs, your site should fail in a user-friendly way. You can
sanitize the inputs or display an error message, though sanitizing is probably the more user-
friendly option in most cases.

Rails comes with a number of built-in defenses that were disabled in Part 1. These built-
in defenses must be disabled. Although in the real world it’s better to use standard, vetted
defense code instead of implementing your own, we want you to get practice implementing
them. In particular, that means you cannot use the following, except as specified in the
special notes.

• Use Rail’s built-in protect from forgery function for CSRF

• Modify any HTTP headers (including cookies)

You are allowed to use Rail’s sanitization functions, but make sure you don’t over-sanitize
(for example, the profile should still allow the same set of sanitized HTML tags minus any
you deem unsafe).

Finally, please modify your README.txt to indicate which files you modified and give
a description for each defense.

6 Notes and Tips

6.1 Special Notes

• For Attack A, it suffices to describe the defense without actually implementing it.

• For the Warm-Up Exercise and Attack D, you must use a Content Security Policy
header for the defense, and then modify any code necessary to maintain the function-
ality of the site.

6.2 Useful Rails Tricks

From the bitbar/ directory, run rails console to open a Ruby console with access to all of
the classes and objects in the Rails project. To printf debug a Rails project, use the puts

command. Output will appear in the terminal window running your server. For example:

puts "Hello, world!"

To reset your database and start fresh, run the following commands from the bitbar/

directory:

rake db:reset

To see how URLs are mapped to controllers and methods, look at the file /config/routes.rb.

Rails uses a lot of files and directories, but most of the interesting ones are under the
app/ subdirectory. Here’s what each subdirectory contains:

• assets: static files used by the site: images, stylesheets, etc.

8



• controllers: contain the code that runs to handle a request to a particular URL. Each
controller method performs whatever processing is needed, then makes a call to the
render function to generate a view (the HTML returned in the HTTP response).
Variables prefaced with an @ in the controller are automatically available in the view.

• helpers: helper functions used by views to generate HTML.

• models: define objects used to interact with the database.

• views: generate the HTML that is returned. Each file is a .html.erb file (HTML
with embedded Ruby). Normal HTML is output as-is. The tags <% %> and <%=

%> interpret their contents as Ruby code (the latter tag outputs the result into the
HTML being generated). There is one .html.erb file for each controller method,
and the Ruby code in each file has access to any variables prefaced with a @ in the
corresponding controller method. The view in layouts/application.html.erb is
special - it is automatically output as part of every HTML page generated.

9


	Introduction
	Resources
	Setup Instructions
	Part 1: Attacks
	Warm-Up Exercise: Cookie Theft
	Attack A: Session Hijacking with Cookies
	Attack B: Cross-Site Request Forgery
	Attack B+: Cross-Site Request Forgery With User Assistance
	Attack C: Little Bobby Tables (aka SQL Injection)
	Attack D: Profile Worm
	Attack E (Extra Credit): Password Theft
	Race conditions
	Submission

	Part 2: Defenses
	Notes and Tips
	Special Notes
	Useful Rails Tricks


