CS 155: Real-World Security

April 14, 2016

Alex Stamos CSO, Facebook

Why are you here?

Agenda

We are going to discuss:

- How bugs are found
- How defense works in the real world

We will walk through some:

- Real bugs
- Real impacts

Then we will discuss:

- Interesting problems for you to solve
- Five basic tips for career success

How are bugs found?

Vulnerability Discovery is the art of...

Pushing software into exploitable states

 Predicting the kinds of mistakes engineers will make and QA/security teams will miss

Making the impossible possible

Fuzzing

Using automation to mutate input into a system and look for exploitable states

Enhanced by:

- Intelligently unpacking, mutating, and re-packing formats
- Instrumenting the binary to accelerate input and look for caught exceptions
- Studying control-flow and intentionally hitting corner cases

Fuzzing

```
american fuzzy lop 1.74b (readelf)
 process timing
                                                        overall results
       run time : 0 days, 0 hrs, 8 min, 24 sec
                                                        cvcles done : 0
 last new path: 0 days, 0 hrs, 1 min, 59 sec
                                                        total paths: 812
last uniq crash : 0 days, 0 hrs, 3 min, 17 sec
                                                       uniq crashes : 8
 last uniq hang: 0 days, 0 hrs, 3 min, 23 sec
                                                        uniq hangs : 10
 cycle progress
                                       map coverage
 now processing : 0 (0.00%)
                                        map density : 3158 (4.82%)
paths timed out : 0 (0.00%)
                                      count coverage : 2.56 bits/tuple
stage progress
                                       findings in depth -
now trying : arith 8/8
                                      favored paths: 1 (0.12%)
stage execs : 295k/326k (90.31%)
                                       new edges on: 318 (39.16%)
total execs : 552k
                                     total crashes : 63 (8 unique)
 exec speed : 1114/sec
                                        total hangs: 191 (10 unique)
fuzzing strategy yields
                                                       path geometry
 bit flips: 447/75.5k, 59/75.5k, 59/75.5k
                                                        levels : 2
byte flips : 7/9436, 0/5858, 6/5950
                                                        pending: 812
arithmetics : 0/0, 0/0, 0/0
                                                       pend fav : 1
 known ints: 0/0, 0/0, 0/0
                                                      own finds: 811
 dictionary : 0/0, 0/0, 0/0
                                                       imported : n/a
     havoc : 0/0, 0/0
                                                       variable: 0
      trim : 0.00%/1166, 38.39%
                                                                  [cpu: 15%]
```

Reverse Engineering

Reverse engineering allows the researcher to:

- Find exploitable states and work backward
- Look for common antipatterns
- Understand and bypass sanity checks and protections

Includes:

- Debugging
- Disassembly
- Binary diffing
- Decompilation

Manual Manipulation

- Many interesting flaws boil down to asking the software to do something
- Due to:
 - Confused deputy problems
 - Missing access control checks
 - Lack of data consistency checks

 Often using tools to intercept and manipulate inputs

Pulling it Together

Professional bug hunters often pull many techniques together:

1. Disassemble a binary to discover:

```
IDA View-A
                          = dword ptr
                                       OCh
          arg_4
                          push
                                   ebp
                                   ebp, esp
                          mov
                                  esp, 40h
                          sub
                          push
                                   ebx
                                  esi
                          push
                                  edi
                          push
                                   edi, [ebp+var 40]
                          lea
                                   ecx, 10h
                          mov
                                   eax, OCCCCCCCh
                          MOV
                          rep stosd
                                   offset ?? C@ OBH@HGKH@The?5string?5entered?5is?6?$AA@ ; "Th
                          push
                                  printf
                          call
                          add
                                  esp. 4
                                   eax, [ebp+arq 4]
                          MOV
                                   ecx, [eax+4]
                          MOV
                          push
                                   ecx
                                   printf
                          call
                                   esp.
                          aud-
                          xor
                                   eax, eax
                                   edi
                          pop
                                  esi
                          pop
```

Pulling it Together

2. Use format-aware fuzzing to try to find entry points that lead to format string

Pulling it Together

3. Researcher carefully modifies crash-creating documents by the fuzzer to

obtain execution

Real World Bugs

Facebook Picture Sharing on Comment Exploit

Apple's TLS Code

```
hashOut.data = hashes + SSL MD5 DIGEST LEN;
hashOut.length = SSL SHA1 DIGEST LEN;
if ((err = SSLFreeBuffer(&hashCtx)) != 0)
goto fail;
if ((err = ReadyHash(&SSLHashSHA1, &hashCtx)) != 0)
goto fail;
if ((err = SSLHashSHA1.update(&hashCtx, &clientRandom)) != 0)
goto fail;
if ((err = SSLHashSHA1.update(&hashCtx, &serverRandom)) != 0)
goto fail;
if ((err = SSLHashSHA1.update(&hashCtx, &signedParams)) != 0)
goto fail;
goto fail;
if ((err = SSLHashSHA1.final(&hashCtx, &hashOut)) != 0)
goto fail;
err = sslRawVerify(...);
```

Embedding Script in Images

https://whitton.io/articles/xss-on-facebook-via-png-content-types/

Bug or feature?

FFmpeg Protocols Documentation

3.4 concat

Table of Con

- 1 Description
- 2 Protocol Options
- 3 Protocols
 - o 3.1 async
 - o 3.2 bluray
 - 3.3 cach
 - o 3.4 concat
 - o 3.5 crypto
 - 3.6 data
 - o 3.7 file
 - o 3.8 ftp
 - o 3.9 gopher
 - o 3.10 hls
 - o 3.11 http
 - 3.11.1 HTTF
 - o 3.12 Icecast
 - o 3.13 mmst
 - o 3.14 mmsh
 - 0 3.14 111113
 - o 3.15 mc
 - o 3.16 pipe

Physical concatenation protocol.

Read and seek from many resources in sequence as if they were a unique resource.

A URL accepted by this protocol has the syntax:

concat: URL1 | URL2 | ... | URLN

where URL1, URL2, ..., URLN are the urls of the resource to be concatenated, each one possibly specifying a distinct protocol.

For example to read a sequence of files split1.mpeg, split2.mpeg, split3.mpeg with ffplay use the command:

ffplay concat:split1.mpeg\|split2.mpeg\|split3.mpeg

Note that you may need to escape the character "|" which is special for many shells.

Bug or feature?

Memory Management

Who Finds Bugs?

Who Looks for Bugs?

Defenders:

- Have benefit of source code, access to engineers
- Target 100% coverage, so broad-and-shallow testing is common
- Generally need automation to assist

Attackers:

- Have less information, not a huge problem with shipped code
- Only need a handful of flaws to chain them together
- Need to find and explore issues without alerting defenders

Researchers:

- Various motivations. Money? Fame?
- Lots of ethical reporting options via bug bounties
- Generally want to stay on right side of the law

Real World Defense

Real World Defense Should Focus on...

... **Real World Problems** (for securing people)

Three biggest problems for most people:

- 1. Compromised reused passwords
- 2. Phishing credentials
- 3. Common, n-day malware

... **Real World Attackers** (for securing enterprises)

Namely, capabilities, tools, techniques and procedures for the intrusion kill chain:

- 1. Reconnaissance
- 2. Weaponization
- 3. Delivery
- 4. Exploitation
- 5. Installation
- Command and Control
- 7. Actions on Objectives

http://www.lockheedmartin. com/content/dam/lockheed/data/corporate/documents/LM-White-Paper-Intel-Driven-Defense.pdf

Security research often misses the point

The incentives for private and academic research point the wrong way:

The World's Address: An App That's Worn Kassem Fawaz, Huan Feng, and Kang G. Shin, University of Michigan LinkDroid: Reducing Unregulated Aggregation of App Usage Behaviors Huan Feng, Kassem Fawaz, and Kang G. Shin, University of Michigan Yan Michalevsky, Aaron Schulman, Gunaa Arumugam Veerapandian, and Dan Boneh, Gabi Nakibly, National Research and Simulation Center/Rafael Ltd. ADDioS! In the Compression Hornet's Nest: A Security Study of Data Compression in Netwo Giancarlo Pellegrino, Saarland University: Davide Balzarotti, Eurecom: Stefan Winter & Technische Universität Darmstadt Seyed K. Fayaz, Yoshiaki Tobioka, and Vyas Sekar, Carnegie Mellon University; Michael Seyed K. Fayaz, Yoshiaki Tobioka, and Vyas Sekar, Carnegie Mellon University; Michael Seyed K. Fayaz, Yoshiaki Tobioka, and Vyas Sekar, Carnegie Mellon University; Michael Seyed K. Fayaz, Yoshiaki Tobioka, and Vyas Sekar, Carnegie Mellon University; Michael Seyed K. Fayaz, Yoshiaki Tobioka, and Vyas Sekar, Carnegie Mellon University; Michael Seyed K. Fayaz, Yoshiaki Tobioka, and Vyas Sekar, Carnegie Mellon University; Michael Seyed K. Fayaz, Yoshiaki Tobioka, and Vyas Sekar, Carnegie Mellon University; Michael Seyed K. Fayaz, Yoshiaki Tobioka, and Vyas Sekar, Carnegie Mellon University; Michael Seyed K. Fayaz, Yoshiaki Tobioka, and of Illinois at Urbana-Champaign Boxed Out: Blocking Cellular Interconnect Bypass Fraud at the Network Edge. . . . Bradley Reaves, University of Florida; Ethan Shernan, Georgia Institute of Technology; University of Florida; Henry Carter, Georgia Institute of Technology; Patrick Traynor, L. Attacks: I Won't Let You Down GSMem: Data Exfiltration from Air-Gapped Computers over GSM Frequencies . . Mordechai Guri, Assaf Kachlon, Ofer Hasson, Gabi Kedma, Yisroel Mirsky, and Yuval University of the Negev Ramya Jayaram Masti, Devendra Rai, Aanjhan Ranganathan, Christian Müller, Lothar 7 Srdjan Čapkun, ETH Zürich Rocking Drones with Intentional Sound Noise on Gyroscopic Sensors..... Yunmok Son, Hocheol Shin, Dongkwan Kim, Youngseok Park, Juhwan Noh, Kibum Ch and Yongdae Kim, Korea Advanced Institute of Science and Technology (KAIST) How Do You Secure a Cloud and Pin it Down? Cache Template Attacks: Automating Attacks on Inclusive Last-Level Caches. Daniel Gruss, Raphael Spreitzer, and Stefan Mangard, Graz University of Technology Venkatanathan Varadarajan, University of Wisconsin-Madison; Yingian Zhang, The O Thomas Ristenpart, Cornell Tech; Michael Swift, University of Wisconsin-Madison A Measurement Study on Co-residence Threat inside the Cloud..... Zhang Xu, College of William and Mary; Haining Wang, University of Delaware; Zheny

NEC Laboratories America

What causes the most problems for normal users?

Real World Defense - Logins

Supplemental Authentication

Open Real World Problems

Network Security at Scale

Dumb sensors, smart (delayed) decisions

Careers in Security

What impact do you want to have on the world?

InfoSec might be the most impactful engineering discipline of the 21st century.

You can choose to:

- Protect those who cannot protect themselves
- Bring voice to those who have never had it
- Secure the technologies that billions depend upon
- Stop those who wish to use technology to control and oppress millions

Participating in this industry makes you a moral actor.

Shape your career around your ethical choices, not vice versa.

Six Tips for a Successful Career

- 1. Always put yourself in a position to learn and grow. Comfort == decay
- 2. Be part of the product, not the plumbing
- 3. Your point of maximum leverage comes right after you get a job offer
- 4. Understand the Cap Table for any private company
- 5. Always go into a meeting knowing what you want the outcome to be
- 6. It's a small industry. Be nice

Thank you and good luck!

alex@stamos.org