
Dan	Boneh

Web Security: Session Management

CS155

Dan	Boneh

Same	origin	policy:			review
Review:			Same	Origin	Policy	(SOP)	for	DOM:

–Origin	A	can	access	origin	B’s	DOM	if	match	on
(scheme,			domain,		port)

This	lecture:		Same	Original	Policy	(SOP)	for	cookies:	

– Based	on:						([scheme],	 	domain,		path)

optional

scheme://domain:port/path?params

Dan	Boneh

scope

Setting/deleting cookies by server

Default scope is domain and path of setting URL

Browser Server
GET …

HTTP Header:
Set-cookie: NAME=VALUE ;

domain = (when to send) ;
path = (when to send)
secure = (only send over SSL);
expires = (when expires) ;
HttpOnly
SameSite = [lax | strict]

if	expires=NULL:
this	session	only

if	expires=past	date:
browser	deletes	cookie

weak	XSS	defense

weak	CSRF	defense

Dan	Boneh

Scope setting rules (write SOP)

domain:			any	domain-suffix	of	URL-hostname,	except	TLD

example:					
host	=	“login.site.com”

• login.site.com can	set	cookies	
for	all	of	.site.com but	not	for	another	site		or		TLD			

Problematic	for	sites	like			.stanford.edu			 (and	some	hosting	centers)

path:		can	be	set	to	anything

allowed domains
login.site.com

.site.com

disallowed domains
other.site.com
othersite.com

.com

Dan	Boneh

Cookies are identified by (name,domain,path)

Both cookies stored in browser’s cookie jar
both are in scope of login.site.com

cookie 1
name = userid
value = test
domain = login.site.com
path = /
secure

cookie 2
name = userid
value = test123
domain = .site.com
path = /
secure

distinct	cookies

Dan	Boneh

Reading cookies on server (read SOP)

Browser	sends	all	cookies	in	URL	scope:

• cookie-domain	is	domain-suffix	of	URL-domain,	and

• cookie-path	is	prefix	of	URL-path,	and

• [protocol=HTTPS		if	cookie	is	“secure”]

Goal:			server	only	sees	cookies	in	its	scope

Browser ServerGET		//URL-domain/URL-path
Cookie:		NAME	=	VALUE

Dan	Boneh

Examples

http://checkout.site.com/
http://login.site.com/
https://login.site.com/

cookie	1
name	=	userid
value	=	u1
domain	=	login.site.com
path	=	/
secure

cookie	2
name	=	userid
value	=	u2
domain	=	.site.com
path	=	/
non-secure

both set by login.site.com

cookie:	userid=u2
cookie:	userid=u2
cookie:	userid=u1;	userid=u2

Dan	Boneh

Client	side	read/write:					document.cookie
Setting	a	cookie	in	Javascript:

document.cookie=	“name=value;		expires=…;	”

Reading	a	cookie: alert(document.cookie)
prints string	containing	all	cookies	available	for	
document				(based	on	[protocol],	domain,	path)

Deleting	a	cookie:
document.cookie=		“name=;		expires=	Thu,	01-Jan-70”

HttpOnly cookies:			not	included	in	document.cookie

Dan	Boneh

javascript: alert(document.cookie)

Javascript URL

Displays all cookies for current document

Dan	Boneh

Viewing/deleting cookies in Browser UI

Dan	Boneh

Cookie	protocol	problems

Dan	Boneh

Cookie protocol problems
Server	is	blind:

– Does	not	see	cookie	attributes		(e.g.	secure,	HttpOnly)
– Does	not	see	which	domain	set	the	cookie

Server	only	sees:					 Cookie:		NAME=VALUE

Dan	Boneh

Example 1: login server problems
1. Alice	logs	in	at				login.site.com

login.site.com sets	session-id	cookie	for		.site.com

2.			Alice	visits			evil.site.com
overwrites				.site.com session-id	cookie
with	session-id	of	user	“badguy”

3.			Alice	visits			course.site.com to	submit	homework
course.site.com thinks	it	is	talking	to	“badguy”

Problem:		course.site.com expects	session-id	from		login.site.com;
cannot	tell	that	session-id	cookie	was	overwritten

Dan	Boneh

Example 2: “secure” cookies are not secure
Alice	logs	in	at				https://accounts.google.com

Alice	visits					http://www.google.com (cleartext)
• Network	attacker	can	inject	into	response

Set-Cookie:		SSID=badguy;	secure
and	overwrite	secure	cookie

Problem:			network	attacker	can	re-write	HTTPS	cookies	!
• HTTPS	cookie	value	cannot	be	trusted

set-cookie:	SSID=A7_ESAgDpKYk5TGnf;		Domain=.google.com;		Path=/		;
Expires=Wed,	09-Mar-2026	18:35:11	GMT;		Secure;		HttpOnly

set-cookie:	SAPISID=wj1gYKLFy-RmWybP/ANtKMtPIHNambvdI4;	 	Domain=.google.com;Path=/		;
Expires=Wed,	09-Mar-2026	18:35:11	GMT;		Secure

Dan	Boneh

Interaction with the DOM SOP
Cookie	SOP	path	separation:

x.com/A does	not	see	cookies	of					x.com/B

Not	a	security	measure:			x.com/A has	access	to	DOM	of		x.com/B

<iframe src=“x.com/B"></iframe>

alert(frames[0].document.cookie);

Path	separation	is	done	for	efficiency	not	security:
x.com/A				is	only	sent	the	cookies	it	needs

Dan	Boneh

Cookies have no integrity
User	can	change	and	delete	cookie	values

• Edit	cookie	database	(FF:			cookies.sqlite)
• Modify	Cookie	header			(FF:			TamperData extension)

Silly	example:	shopping	cart	software
Set-cookie: shopping-cart-total	=	150 ($)

User	edits	cookie	file		(cookie	poisoning):
Cookie: shopping-cart-total	=	15 ($)

Similar	problem	with	hidden	fields
<INPUT	TYPE=“hidden”NAME=price	VALUE=“150”>

16

Dan	Boneh17

Not so silly … (old)

• D3.COM Pty Ltd: ShopFactory 5.8
• @Retail Corporation: @Retail
• Adgrafix: Check It Out
• Baron Consulting Group: WebSite Tool
• ComCity Corporation: SalesCart
• Crested Butte Software: EasyCart
• Dansie.net: Dansie Shopping Cart
• Intelligent Vending Systems: Intellivend
• Make-a-Store: Make-a-Store OrderPage
• McMurtrey/Whitaker & Associates: Cart32 3.0
• pknutsen@nethut.no: CartMan 1.04
• Rich Media Technologies: JustAddCommerce 5.0
• SmartCart: SmartCart
• Web Express: Shoptron 1.2

Source:				http://xforce.iss.net/xforce/xfdb/4621

Dan	Boneh

Solution: cryptographic checksums

Binding	to	session-id	(SID)	makes	it	harder	to	replay	old	cookies

Goal:				data	integrity
Requires	server-side	secret	key		k		unknown	to	browser

Browser Server kSet-Cookie:		NAME	=	 value T

Cookie:			NAME	= value T

Generate tag: T ⟵ MACsign(k, SID ll name ll value)

Verify tag: MACverify(k, SID ll name ll value, T)

Dan	Boneh19

Example: ASP.NET
System.Web.Configuration.MachineKey

– Secret	web	server	key	intended	for	cookie	protection

Creating	an	encrypted	cookie	with	integrity:

HttpCookie cookie =	new HttpCookie(name, val);	
HttpCookie encodedCookie=

HttpSecureCookie.Encode (cookie);

Decrypting	and	validating	an	encrypted	cookie:

HttpSecureCookie.Decode (cookie);

Dan	Boneh

Session	Management

Dan	Boneh

Sessions
A	sequence	of	requests	and	responses	from	one	browser	
to	one	(or	more)	sites

– Session	can	be	long		(e.g.	Gmail)	or	short
– without	session	mgmt:

users	would	have	to	constantly	re-authenticate

Session	mgmt:				authorize	user	once;
– All	subsequent	requests	are	tied	to	user

Dan	Boneh

Pre-history: HTTP auth
HTTP request: GET /index.html
HTTP response contains:

WWW-Authenticate: Basic realm="Password Required“

Browsers sends hashed password on all subsequent HTTP requests:
Authorization: Basic ZGFddfibzsdfgkjheczI1NXRleHQ=

Dan	Boneh

HTTP auth problems
Hardly	used	in	commercial	sites:

• User	cannot	log	out	other	than	by	closing	browser
– What	if	user	has	multiple	accounts?		
multiple	users	on	same	machine?

• Site	cannot	customize	password	dialog

• Confusing	dialog	to	users	

• Easily	spoofed

Dan	Boneh

Session tokens
Browser

GET	/index.html

set	anonymous	session	token

GET	/books.html
anonymous	session	token

POST	/do-login
Username	&	password

elevate	to	a	logged-in	session	token

POST	/checkout
logged-in	session	token

check	
credentials
(crypto)

Validate
token

web	site

Dan	Boneh

Storing session tokens:
Lots of options (but none are perfect)

Browser	cookie:
Set-Cookie:				SessionToken=fduhye63sfdb

Embed	in	all	URL	links:
https://site.com/checkout	?	SessionToken=kh7y3b

In	a	hidden	form	field:
<input	type=“hidden”name=“sessionid” value=“kh7y3b”>

Dan	Boneh

Storing session tokens: problems
Browser	cookie:			browser	sends	cookie	with	every	request,

even	when	it	should	not			(CSRF)

Embed	in	all	URL	links:					token	leaks	via	HTTP		Referer header

In	a	hidden	form	field:					does	not	work	for	long-lived	sessions

Best	answer:			a	combination	of	all	of	the	above.

(or	if	user	posts	URL	in	a	public	blog)

Dan	Boneh

The HTTP referer header

Referer leaks	URL	session	token	to	3rd parties

Referer supression:
• not	sent	when	HTTPS	site	refers	to	an	HTTP	site
• in	HTML5:					

Dan	Boneh

The Logout Process
Web	sites	must	provide	a	logout	function:
• Functionality:		let	user	to	login	as	different	user
• Security:			prevent	others	from	abusing	account

What	happens	during	logout:
1.		Delete	SessionToken from	client
2.		Mark	session	token	as	expired	on	server

Problem:			many	web	sites	do	(1)	but	not	(2)			!!
⇒ Especially	risky	for	sites	who	fall	back	to	HTTP	after	login	

Dan	Boneh

Session	hijacking

Dan	Boneh

Session	hijacking
Attacker	waits	for	user	to	login

then	attacker	steals	user’s	Session	Token	
and	“hijacks” session

⇒ attacker	can	issue	arbitrary	requests	on	behalf	of	user

Example:			FireSheep [2010]				

Firefox	extension	that	hijacks	Facebook	
session	tokens	over	WiFi.										Solution:			HTTPS	after	login

Dan	Boneh

Beware: Predictable tokens
Example	1: counter	

⇒ user	logs	in,	gets	counter	value,	
can	view	sessions	of	other	users

Example	2:				weak	MAC.							token	=	{ userid,		MACk(userid)	}
• Weak	MAC	exposes		 k		 from	few	cookies.

Apache	Tomcat:			generateSessionId()
• Returns	random	session	ID					[server	retrieves	client	state	based	on	sess-id]

Dan	Boneh

Session	tokens	must	be	unpredictable	to	attacker

To	generate:		use	underlying	framework		(e.g.	ASP,	Tomcat,	Rails)

Rails:					token	=	MD5(current	time,	random	nonce)

Dan	Boneh

Beware:		Session	token	theft
Example	1:				login	over	HTTPS,		but	subsequent	HTTP
• Enables	cookie	theft	at	wireless	Café	 (e.g.	Firesheep)
• Other	ways	network	attacker	can	steal	token:

– Site	has	mixed	HTTPS/HTTP	pages		⇒ token	sent	over	HTTP
– Man-in-the-middle	attacks	on	SSL	

Example	2:				Cross	Site	Scripting	(XSS)	exploits

Amplified	by	poor	logout	procedures:
– Logout	must	invalidate	token	on	server

Dan	Boneh

Mitigating SessionToken theft by binding
SessionToken to client’s computer

Client	IP	addr:				makes	it	harder	to	use	token	at	another	machine
– But	honest	client	may	change	IP	addr during	session

• client	will	be	logged	out	for	no	reason.

Client	user	agent: weak	defense	against	theft,	but	doesn’t	hurt.

SSL	session	id:		same	problem	as	IP	address			(and	even	worse)

A	common	idea:		embed	machine	specific	data	in	SID

Dan	Boneh

Session	fixation	attacks
Suppose	attacker	can	set	the	user’s	session	token:
• For	URL	tokens,	trick	user	into	clicking	on	URL
• For	cookie	tokens,	set	using	XSS	exploits

Attack:					(say,	using	URL	tokens)

1. Attacker	gets	anonymous	session	token	for	site.com

2. Sends	URL	to	user	with	attacker’s	session	token

3. User	clicks	on	URL	and	logs	into		site.com
– this	elevates	attacker’s	token	to	logged-in	token

4. Attacker	uses	elevated	token	to	hijack	user’s	session.

Dan	Boneh

Session	fixation:		lesson

When elevating user from anonymous to logged-in:

always issue a new session token

After login, token changes to value unknown to attacker

⇒ Attacker’s token is not elevated.

Dan	Boneh

Summary

• Always	assume	cookie	data	retrieved	from	client	is	adversarial

• Session	tokens	are	split	across	multiple	client	state	mechanisms:
– Cookies,		hidden	form	fields,			URL	parameters
– Cookies	by	themselves	are	insecure		(CSRF,	cookie	overwrite)
– Session	tokens	must	be	unpredictable	and	resist	theft	by	
network	attacker

• Ensure	logout	invalidates	session	on	server

Dan	Boneh

THE		END

