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Same	origin	policy:			review
Review:			Same	Origin	Policy	(SOP)	for	DOM:

–Origin	A	can	access	origin	B’s	DOM	if	match	on
(scheme,			domain,		port)

This	lecture:		Same	Original	Policy	(SOP)	for	cookies:	

– Based	on:						([scheme],	 	domain,		path)

optional

scheme://domain:port/path?params
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scope

Setting/deleting cookies by server

Default scope is domain and path of setting URL

Browser Server
GET …

HTTP Header:
Set-cookie: NAME=VALUE ;

domain = (when to send) ;
path = (when to send)
secure = (only send over SSL);
expires = (when expires) ;
HttpOnly
SameSite = [lax | strict]

if	expires=NULL:
this	session	only

if	expires=past	date:
browser	deletes	cookie

weak	XSS	defense

weak	CSRF	defense
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Scope setting rules   (write SOP)

domain:			any	domain-suffix	of	URL-hostname,	except	TLD

example:					
host	=	“login.site.com”

• login.site.com can	set	cookies	
for	all	of	.site.com but	not	for	another	site		or		TLD			

Problematic	for	sites	like			.stanford.edu			 (and	some	hosting	centers)

path:		can	be	set	to	anything

allowed domains
login.site.com

.site.com

disallowed domains
other.site.com
othersite.com

.com
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Cookies are identified by  (name,domain,path)

Both cookies stored in browser’s cookie jar
both are in scope of    login.site.com

cookie 1
name = userid
value = test
domain = login.site.com
path = /
secure

cookie 2
name = userid
value = test123
domain = .site.com
path = /
secure

distinct	cookies
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Reading cookies on server   (read SOP)

Browser	sends	all	cookies	in	URL	scope:

• cookie-domain	is	domain-suffix	of	URL-domain,	and

• cookie-path	is	prefix	of	URL-path,	and

• [protocol=HTTPS		if	cookie	is	“secure”]

Goal:			server	only	sees	cookies	in	its	scope

Browser ServerGET		//URL-domain/URL-path
Cookie:		NAME	=	VALUE
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Examples

http://checkout.site.com/
http://login.site.com/
https://login.site.com/

cookie	1
name	=	userid
value	=	u1
domain	=	login.site.com
path	=	/
secure

cookie	2
name	=	userid
value	=	u2
domain	=	.site.com
path	=	/
non-secure

both set by   login.site.com

cookie:	userid=u2
cookie:	userid=u2
cookie:	userid=u1;	userid=u2
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Client	side	read/write:					document.cookie
Setting	a	cookie	in	Javascript:

document.cookie=	“name=value;		expires=…;	”

Reading	a	cookie: alert(document.cookie)
prints string	containing	all	cookies	available	for	
document				(based	on	[protocol],	domain,	path)

Deleting	a	cookie:
document.cookie=		“name=;		expires=	Thu,	01-Jan-70”

HttpOnly cookies:			not	included	in	document.cookie
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javascript:  alert(document.cookie)

Javascript URL

Displays all cookies for current document
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Viewing/deleting cookies in Browser UI
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Cookie	protocol	problems
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Cookie protocol problems
Server	is	blind:

– Does	not	see	cookie	attributes		(e.g.	secure,	HttpOnly)
– Does	not	see	which	domain	set	the	cookie

Server	only	sees:					 Cookie:		NAME=VALUE
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Example 1:  login server problems
1. Alice	logs	in	at				login.site.com

login.site.com sets	session-id	cookie	for		.site.com

2.			Alice	visits			evil.site.com
overwrites				.site.com session-id	cookie
with	session-id	of	user	“badguy”

3.			Alice	visits			course.site.com to	submit	homework
course.site.com thinks	it	is	talking	to	“badguy”

Problem:		course.site.com expects	session-id	from		login.site.com;
cannot	tell	that	session-id	cookie	was	overwritten
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Example 2:   “secure” cookies are not secure
Alice	logs	in	at				https://accounts.google.com

Alice	visits					http://www.google.com (cleartext)
• Network	attacker	can	inject	into	response

Set-Cookie:		SSID=badguy;	secure
and	overwrite	secure	cookie

Problem:			network	attacker	can	re-write	HTTPS	cookies	!
• HTTPS	cookie	value	cannot	be	trusted

set-cookie:	SSID=A7_ESAgDpKYk5TGnf;		Domain=.google.com;		Path=/		;
Expires=Wed,	09-Mar-2026	18:35:11	GMT;		Secure;		HttpOnly

set-cookie:	SAPISID=wj1gYKLFy-RmWybP/ANtKMtPIHNambvdI4;	 	Domain=.google.com;Path=/		;
Expires=Wed,	09-Mar-2026	18:35:11	GMT;		Secure



Dan	Boneh

Interaction with the DOM SOP
Cookie	SOP	path	separation:

x.com/A does	not	see	cookies	of					x.com/B

Not	a	security	measure:			x.com/A has	access	to	DOM	of		x.com/B

<iframe src=“x.com/B"></iframe>

alert(frames[0].document.cookie);

Path	separation	is	done	for	efficiency	not	security:
x.com/A				is	only	sent	the	cookies	it	needs



Dan	Boneh

Cookies have no integrity
User	can	change	and	delete	cookie	values

• Edit	cookie	database	(FF:			cookies.sqlite)
• Modify	Cookie	header			(FF:			TamperData extension)

Silly	example:	shopping	cart	software
Set-cookie: shopping-cart-total	=	150 ($)

User	edits	cookie	file		(cookie	poisoning):
Cookie: shopping-cart-total	=	15 ($)

Similar	problem	with	hidden	fields
<INPUT	TYPE=“hidden”NAME=price	VALUE=“150”>

16
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Not so silly …   (old)

• D3.COM Pty Ltd: ShopFactory 5.8
• @Retail Corporation: @Retail
• Adgrafix: Check It Out
• Baron Consulting Group: WebSite Tool 
• ComCity Corporation: SalesCart
• Crested Butte Software: EasyCart
• Dansie.net: Dansie Shopping Cart
• Intelligent Vending Systems: Intellivend
• Make-a-Store: Make-a-Store OrderPage
• McMurtrey/Whitaker & Associates: Cart32 3.0 
• pknutsen@nethut.no: CartMan 1.04 
• Rich Media Technologies: JustAddCommerce 5.0 
• SmartCart: SmartCart
• Web Express: Shoptron 1.2 

Source:				http://xforce.iss.net/xforce/xfdb/4621
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Solution:   cryptographic checksums

Binding	to	session-id	(SID)	makes	it	harder	to	replay	old	cookies

Goal:				data	integrity
Requires	server-side	secret	key		k		unknown	to	browser

Browser Server kSet-Cookie:		NAME	=	 value T

Cookie:			NAME	= value T

Generate tag:   T ⟵ MACsign(k, SID ll name ll value )

Verify tag:   MACverify(k,   SID ll name ll value,   T)
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Example:    ASP.NET
System.Web.Configuration.MachineKey

– Secret	web	server	key	intended	for	cookie	protection

Creating	an	encrypted	cookie	with	integrity:

HttpCookie cookie =	new HttpCookie(name, val);	
HttpCookie encodedCookie=

HttpSecureCookie.Encode (cookie);

Decrypting	and	validating	an	encrypted	cookie:

HttpSecureCookie.Decode (cookie);
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Session	Management
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Sessions
A	sequence	of	requests	and	responses	from	one	browser	
to	one	(or	more)	sites

– Session	can	be	long		(e.g.	Gmail)	or	short
– without	session	mgmt:

users	would	have	to	constantly	re-authenticate

Session	mgmt:				authorize	user	once;
– All	subsequent	requests	are	tied	to	user
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Pre-history:   HTTP auth
HTTP request: GET   /index.html
HTTP response contains:

WWW-Authenticate:  Basic realm="Password Required“

Browsers sends hashed password on all subsequent HTTP requests:
Authorization:  Basic ZGFddfibzsdfgkjheczI1NXRleHQ=
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HTTP auth problems
Hardly	used	in	commercial	sites:

• User	cannot	log	out	other	than	by	closing	browser
– What	if	user	has	multiple	accounts?		
multiple	users	on	same	machine?

• Site	cannot	customize	password	dialog

• Confusing	dialog	to	users	

• Easily	spoofed
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Session tokens
Browser

GET	/index.html

set	anonymous	session	token

GET	/books.html
anonymous	session	token

POST	/do-login
Username	&	password

elevate	to	a	logged-in	session	token

POST	/checkout
logged-in	session	token

check	
credentials
(crypto)

Validate
token

web	site
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Storing session tokens:  
Lots of options   (but none are perfect)

Browser	cookie:
Set-Cookie:				SessionToken=fduhye63sfdb

Embed	in	all	URL	links:
https://site.com/checkout	?	SessionToken=kh7y3b

In	a	hidden	form	field:
<input	type=“hidden”name=“sessionid” value=“kh7y3b”>
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Storing session tokens:   problems
Browser	cookie:			browser	sends	cookie	with	every	request,

even	when	it	should	not			(CSRF)

Embed	in	all	URL	links:					token	leaks	via	HTTP		Referer header

In	a	hidden	form	field:					does	not	work	for	long-lived	sessions

Best	answer:			a	combination	of	all	of	the	above.

(or	if	user	posts	URL	in	a	public	blog)
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The HTTP referer header

Referer leaks	URL	session	token	to	3rd parties

Referer supression:
• not	sent	when	HTTPS	site	refers	to	an	HTTP	site
• in	HTML5:					<a  rel=”noreferrer” href=www.example.com>
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The Logout Process
Web	sites	must	provide	a	logout	function:
• Functionality:		let	user	to	login	as	different	user
• Security:			prevent	others	from	abusing	account

What	happens	during	logout:
1.		Delete	SessionToken from	client
2.		Mark	session	token	as	expired	on	server

Problem:			many	web	sites	do	(1)	but	not	(2)			!!
⇒ Especially	risky	for	sites	who	fall	back	to	HTTP	after	login	
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Session	hijacking
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Session	hijacking
Attacker	waits	for	user	to	login

then	attacker	steals	user’s	Session	Token	
and	“hijacks” session

⇒ attacker	can	issue	arbitrary	requests	on	behalf	of	user

Example:			FireSheep [2010]				

Firefox	extension	that	hijacks	Facebook	
session	tokens	over	WiFi.										Solution:			HTTPS	after	login
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Beware:    Predictable tokens
Example	1: counter	

⇒ user	logs	in,	gets	counter	value,	
can	view	sessions	of	other	users

Example	2:				weak	MAC.							token	=	{ userid,		MACk(userid)	}
• Weak	MAC	exposes		 k		 from	few	cookies.

Apache	Tomcat:			generateSessionId()
• Returns	random	session	ID					[server	retrieves	client	state	based	on	sess-id]
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Session	tokens	must	be	unpredictable	to	attacker

To	generate:		use	underlying	framework		(e.g.	ASP,	Tomcat,	Rails)

Rails:					token	=	MD5(	current	time,	random	nonce )
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Beware:		Session	token	theft
Example	1:				login	over	HTTPS,		but	subsequent	HTTP
• Enables	cookie	theft	at	wireless	Café	 (e.g.	Firesheep)
• Other	ways	network	attacker	can	steal	token:

– Site	has	mixed	HTTPS/HTTP	pages		⇒ token	sent	over	HTTP
– Man-in-the-middle	attacks	on	SSL	

Example	2:				Cross	Site	Scripting	(XSS)	exploits

Amplified	by	poor	logout	procedures:
– Logout	must	invalidate	token	on	server
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Mitigating SessionToken theft by binding 
SessionToken to client’s computer

Client	IP	addr:				makes	it	harder	to	use	token	at	another	machine
– But	honest	client	may	change	IP	addr during	session

• client	will	be	logged	out	for	no	reason.

Client	user	agent: weak	defense	against	theft,	but	doesn’t	hurt.

SSL	session	id:		same	problem	as	IP	address			(and	even	worse)

A	common	idea:		embed	machine	specific	data	in	SID
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Session	fixation	attacks
Suppose	attacker	can	set	the	user’s	session	token:
• For	URL	tokens,	trick	user	into	clicking	on	URL
• For	cookie	tokens,	set	using	XSS	exploits

Attack:					(say,	using	URL	tokens)

1. Attacker	gets	anonymous	session	token	for	site.com

2. Sends	URL	to	user	with	attacker’s	session	token

3. User	clicks	on	URL	and	logs	into		site.com
– this	elevates	attacker’s	token	to	logged-in	token

4. Attacker	uses	elevated	token	to	hijack	user’s	session.
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Session	fixation:		lesson

When elevating user from anonymous to logged-in:

always issue a new session token

After login,  token changes to value unknown to attacker    

⇒ Attacker’s token is not elevated.
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Summary

• Always	assume	cookie	data	retrieved	from	client	is	adversarial

• Session	tokens	are	split	across	multiple	client	state	mechanisms:
– Cookies,		hidden	form	fields,			URL	parameters
– Cookies	by	themselves	are	insecure		(CSRF,	cookie	overwrite)
– Session	tokens	must	be	unpredictable	and	resist	theft	by	
network	attacker

• Ensure	logout	invalidates	session	on	server
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THE		END


