
CS 355 – Topics in Cryptography May 2, 2018

Lecture 10: Inhomogeneous SIS and the LWE Problem

Instructors: Henry Corrigan-Gibbs, Sam Kim, David J. Wu

1 Review

Last lecture, we discussed the SIS problem and leftover hash lemma.

SIS(n,m, q,B): Let n,m, q,B ∈ N be positive integers. For a given adversary A, we define the
following experiment:

• The challenger samples A
r←− Zn×mq , and gives A to the adversary A.

• The adversary A outputs some non-zero vector x ∈ Zmq .

We define A’s advantage in solving the SIS problem for the set of parameters n,m, q,B, denoted
SISAdvn,m,q,B

[
A
]
, to be the probability that A · x = 0 (mod q) and ‖x‖∞ ≤ B.

Note on notation. Recall the notation ‖·‖∞ from lecture. For a vector x ∈ Zmq , we say that ‖x‖∞ ≤
B if for all i ∈ [m], each entry of xi of the vector x satisfies xi ∈ {−B,−B + 1, . . . , 0, . . . , B − 1, B}.
For example, ‖x‖∞ ≤ 1 means that x ∈ {−1, 0, 1}m.

Definition 1.1 (Universal Hash Function). A hash function H : K × X → Y is universal if for
every two distinct elements x,x′ ∈ X , we have

Pr
pk

r←−K

[
H(pk,x) = H(pk,x′)

]
=

1

|Y|
.

The SIS hash function is, in fact, a universal hash function. Showing this is a simple exercise. We
mentioned that universal hash functions are good randomness extractors. Randomness extractors
are useful as a tool to extract some uniformly random bits from unpredictable sources. We formalized
unpredictability with respect to the guessing probability.

Definition 1.2 (Guessing Probability). Let X be a finite set and let DX be some distribution on
X . Then, we define the guessing probability of DX to be γ = max

x∗∈X
Pr

x←DX
[x∗ = x].

Then, we said that if we take a sample from a distribution DX with small guessing probability and
hash the result, we get something that looks uniformly random.

Theorem 1.3 (Simplified Leftover Hash Lemma). Let X and Y be two finite sets, and let H :
K×X → Y be a universal family of hash functions. Let DX be some distribution on X with guessing
probability at most γ. Then, for any (unbounded) adversary A, we have∣∣∣∣Pr

[
A(pk, H(pk,x)) = 1

∣∣ pk r←− K,x← DX
]
− Pr

[
A(pk,y) = 1

∣∣ pk r←− K,y r←− Y
]∣∣∣∣ = γ · |Y|.

10-1

The leftover hash lemma above is a significant simplification of the standard leftover hash lemma.
It is much more general (and powerful) theorem, and generally, instead of formulating with respect
to the distinguishing advantage of unbounded adversaries, we generally formulate it with respect to
statistical distance. If you want to find out more about it, then refer to Section 8.10.4 in Boneh-Shoup
(pg. 329).

Example. Recall that the SIS hash function is parameterized by the SIS parameter n,m, q, with
associated domain and range H : Zn×mq × {0, 1}m → Znq . It is defined

H(A,x) = A · x mod q.

The leftover hash lemma says that if m ≥ 2n log q, then if you sample A
r←− Zn×mq , x

r←− {0, 1}m,

and y
r←− Zmq , we have (

A, H(A,x)
)
≈stat

(
A,y

)
or equivalently, (

A,A · x
)
≈stat

(
A,y

)
. (1.1)

Why is this the case? The uniform distribution over {0, 1}m has guessing probability γ = 1
2m ≤

1
22n log q . The size of the range |Y| = qn = 2n log q. Hence, the distinguishing advantage of any

unbounded adversary is bounded by γ · |Y| = 1
2n log q = 1

qn = negl(n). Fact 1.1 is a very convenient
fact that simplifies the security proofs in many lattice cryptosystems.

2 Inhongeneous SIS

Let’s next discuss a simple variant of the SIS problem called the inhomogenous SIS problem ISIS.

ISIS(n,m, q,B): Let n,m, q,B ∈ N be positive integers. For a given adversary A, we define the
following experiment:

• The challenger samples A
r←− Zn×mq , y

r←− Znq , and gives (A,y) to the adversary A.

• The adversary A outputs some vector x ∈ Zmq .

We define A’s advantage in solving the ISIS problem for the set of parameters n,m, q,B, denoted
ISISAdvn,m,q,B

[
A
]
, to be the probability that A · x = y (mod q) and ‖x‖∞ ≤ B.

2.1 OWF from ISIS

Recall the following function fA : {0, 1}m → Znq is a one-way function assuming SIS(n,m, q,B):

fA(x) = A · x.

The way you would base the one-wayness of this function to SIS(n,m, q,B) is to go through
ISIS(n,m, q,B). We can show that the function above is one-way assuming the ISIS(n,m, q,B).
Then, we can show that ISIS(n,m, q,B) is hard assuming SIS(n,m, q,B).1

1Technically, in the homework, you will show that ISIS(n,m, q,B) is hard assuming SIS(n,m + 1, q, B).

10-2

https://crypto.stanford.edu/~dabo/cryptobook/BonehShoup_0_4.pdf

Definition 2.1 (One-Way Function). We say that a function f : K ×X → Y is one-way if for any

efficient adversary A, for pk
r←− K, x

r←− X , setting y← f(x),

Pr[A(pk,y) = x′ ∧ f(pk,x′) = y] = negl(λ).

Let’s see why the function fA(x) = A · x is one-way assuming ISIS.2 If you compare the OWF
security experiment with respect to fA(·), then basically, the adversary A is given (A,y0 = A · x),
and must provide some preimage x′ such that A ·x′ = y0. In the ISIS experiment, the adversary A is
provided (A,y1) for y1

r←− Znq , and it must provide some x′ such that A · x′ = y1. Here, the leftover
hash lemma (Fact 1.1) says that y0 and y1 are generated statistically close. This immediately shows
that for A to invert the function fA(·), it must solve ISIS.

2.2 Lattice Trapdoors

The one-way function fA(x) is, in fact, not just a one-way function, but it can actually be used as a
trapdoor function. There exists two efficient algorithms TrapGen and f−1A such that

TrapGen(n,m, q) → (A, tdA): The trapdoor generation algorithm takes in matrix dimensions
n,m, q and produces a matrix A ∈ Zn×mq and some “trapdoor” information tdA.

f−1A (tdA,y) → x: The inversion algorithm takes in a trapdoor information tdA, and a vector
y ∈ Znq , and produces some x ∈ Zmq such that A · x = y, and ‖x‖∞ ≤ B.

Bonus material. There are actually a number of ways of defining tdA do this. Perhaps, the

simplest way of doing this is what is known as G-trapdoor. Let’s assume that there exists some
matrix G ∈ Zn×mq such that the function

fG(x) = G · x

is efficiently invertible. The matrix G is often called the gadget matrix. Given G, and y = G · x,
anyone can efficiently find an x′ ∈ {0, 1}m such that G · x′ = y. How do we define G? We will
discuss more about the gadget matrix next lecture in the context of fully homomorphic encryption.

For a trapdoor function, we cannot just use G as the matrix A since this is publicly invertible.
We want a function that is easy to invert only if you have some trapdoor. Therefore, we must
random the matrix G somehow. The high level idea (very informal) way of doing this is as follows:

• TrapGen(n, 2m, q) → (A, tdA): Sample a uniformly random matrix Ã
r←− Zn×mq , and R

r←−
{0, 1}m×m. Let G ∈ Zn×mq be a gadget matrix. Then, define set A = [Ã|Ã ·R + G] ∈ Zn×2mq ,
and let tdA = R.

• f−1A (tdA,y)→ x: Given a target y, the inversion algorithm must find a vector x = [x0|x1] ∈
Z2m
q such that A · x = y. It first computes a vector x∗ ∈ Zmq such that G · x∗ = y.3 Then, it

sets x0 = −R · x∗, and x1 = x∗. It outputs x = [x0|x1].

2Technically speaking, if m >> n, the fact that fA(·) is collision-resistant and is sufficiently compressing already
implies one-wayness, but let’s ignore this fact for now.

3Note that G is publicly invertible.

10-3

We note that the matrix A = [Ã|Ã ·R + G] is indistinguishable from a uniformly sampled matrix
in Zn×2mq . This is because Ã is sampled uniformly, and by the leftover hash lemma (again Fact 1.1),

the matrix Ã ·R is statistically uniform, completely randomizing the component Ã ·R + G.
It is also easy to check that the output x = [x0|x1] that was produced by f−1A (tdA,y) satisfies

A ·x = y. Moreover, since R ∈ {0, 1}m×m, and x∗ ∈ {0, 1}m, the vector x = [R ·x∗ | x∗] have small
entries.

So this is a high level idea of lattice trapdoors. However, the trapdoor function described above
is actually NOT SECURE. This is because every preimage x = [R · x∗ | x∗] leaks information
about the secret trapdoor R. In order to get a complete and secure trapdoor functions from lattices,
we must do some extra work. If you want to find out more about lattice trapdoors, refer to the
paper [1], which has a nice description of G-trapdoors.

2.3 Digital Signatures from ISIS

Using the fact that fA is a trapdoor function, we can construct a digital signature scheme. This is
pretty much identical to the full-domain hash signatures that we saw in Lecture 2 where we used
trapdoor permutations.

Let M be a message space. Fix a hash function (random oracle) H :M→ Znq .

• KeyGen(1λ): The key generation algorithm generates (A, tdA) ← TrapGen(n,m, q). It sets
pk = A and sk = tdA.

• Sign(sk, µ ∈M): The signing algorithm first hashes the message y← H(µ). Then, it computes
x← f−1A (tdA,y), and outputs the signature σ = x ∈ Zmq .

• Verify(pk, µ, σ = x): The verification algorithm hashes the message y← H(µ). Then, it checks
if A · x = y, and ‖x‖∞ ≤ B. If both of these conditions are true, then output “accept” and
otherwise, “reject”.

In lecture 2, we proved the security of FDH signatures from trapdoor permutations in the random
oracle model. The same proof can be adapted to show the security of the construction above. Hence,
we get a digital signature scheme from the ISIS assumption and therefore, the SIS assumption.

10-4

3 Learning with Errors

LWE(n,m, q, χB): Let n,m, q,B ∈ N be positive integers, and let χB be a B-bounded
distribution over Zq. For a given adversary A, we define the following two experiments:

Experiment b (b = 0, 1):

• The challenger computes

A
r←− Zm×nq , s

r←− Znq , e← χmB , b0 ← A · s + e, b1
r←− Zmq ,

and gives the tuple (A,bb) to the adversary.

• The adversary outputs a bit b̂ ∈ {0, 1}.

Let Wb be the event that A outputs 1 in Experiment b. Then, we define A’s advantage in
solving the LWE problem for the set of parameters n,m, q, χB to be

LWEAdvn,m,q,χB

[
A
]

:=

∣∣∣∣Pr[W0]− Pr[W1]

∣∣∣∣.
Note on bounded distributions. We say that a distribution χB is a B-bounded distribution if

Pr
e←χB

[‖e‖∞ ≤ B] = 1.

As we discussed in lecture, for intuition, you can just think of χB as a uniform distribution over the
space {−B,−B + 1, . . . , 0, . . . , B}.

3.1 Regev Encryption

Let’s construct a public key encryption scheme from the learning with errors assumption. The
classical PKE scheme from LWE is Regev encryption, which was first introduced in [2]. The encryption
scheme is defined with respect to the standard LWE parameters.

• KeyGen(1λ) → (sk, pk): The key generation algorithm samples A
r←− Zm×nq , s

r←− Znq , and
e← χmB . Then, it sets sk = s, and pk = (A,v = A · s + e).

• Encrypt(pk, x ∈ {0, 1}) → ct: The encryption algorithm samples a random binary vector

r
r←− {0, 1}m. Then, it computes

c0 ← rTA, c1 ← rTv +
q

2
· x.

It sets ct = (c0, c1) ∈ Znq × Zq, and outputs ct.

• Decrypt(sk, ct)→ x: The decryption algorithm computes x̃ = c1 − c0 · s. If ‖x̃‖∞ ≤ q/4, then
output x = 0. Otherwise, output x = 1.

10-5

Correctness. The decryption algorithm computes c1 − c0 · s. Let’s expand this computation out :

c1 − c0 · s = rTv +
q

2
· x− rTA · s

= rT (A · s + e) +
q

2
· x− rTA · s

= rTA · s + rTe +
q

2
· x− rTA · s

= rTe +
q

2
· x

Note that r ∈ {0, 1}m, and ‖e‖∞ ≤ B. Hence, |rTe| ≤ mB < q/4, and the original message
x ∈ {0, 1} can be recovered by checking whether c1 − c0 · s is closer to 0 or q

2 .

Security. We proceed via a sequence of hybrid experiments.

• Hyb0: This is the real security experiment. The challenger generates the public key pk =
(A,v = A · s + e) as in the real security experiment.

For the challenge ciphertext, it samples r
r←− {0, 1}m as in the real scheme, and computes

c0 ← rTA, c1 ← rTv +
q

2
· x.

• Hyb1: In this experiment, the challenger generates the public key as pk = (A,v
r←− Zmq). By

LWE, this change is computationally indistinguishable to the adversary.

For the challenge ciphertext, it samples r
r←− {0, 1}m as in the real scheme (but using the

modified public key), and computes

c0 ← rTA, c1 ← rTv +
q

2
· x.

• Hyb2: In this experiment, the challenger generates the public key as pk = (A,v
r←− Zmq) as in

the previous hybrid.

For the challenge ciphertext, it sets

c0
r←− Znq , c1

r←− Zq.

Note that in Hyb1, the challenger samples r
r←− {0, 1}m and sets c0 ← rTA and c1 ← rTv+ q

2 ·x.
The leftover hash lemma (again Fact 1.1) says that this is (statistically) indistinguishable from

sampling c0
r←− Znq and c0

r←− Zq. Hence, Hyb1 and Hyb2 are (statistically) indistinguishable
by the leftover hash lemma.

In Hyb2, the ciphertext is completely random. Therefore, the message is information theoretically
hidden.

References

[1] Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Simpler, tighter, faster, smaller.
In EUROCRYPT, 2012.

[2] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. In STOC,
2005.

10-6

	Review
	Inhongeneous SIS
	OWF from ISIS
	Lattice Trapdoors
	Digital Signatures from ISIS

	Learning with Errors
	Regev Encryption

