
CS 355 – Topics in Cryptography May 9, 2018

Lecture 12: Post-Quantum Cryptography and Hash-based

Signatures

Instructors: Henry Corrigan-Gibbs, Sam Kim, David J. Wu

1 LWE in Hermite Normal Form

Lattice-based key exchange is an important topic that we did not cover in lecture. In problem set 4,
we will study a key-exchange protocol. However, to prove security, we will need a simple variant of
the original formulation of the LWE problem.

LWEHNF(n,m, q, χB): Let n,m, q,B ∈ N be positive integers, and let χB be a B-bounded
distribution over Zq. For a given adversary A, we define the following two experiments:

Experiment b (b = 0, 1):

• The challenger computes

A
r←− Zm×nq , s← χnB, e← χmB , b0 ← A · s + e, b1

r←− Zmq ,

and gives the tuple (A,bb) to the adversary.

• The adversary outputs a bit b̂ ∈ {0, 1}.

Let Wb be the event that A outputs 1 in Experiment b. Then, we define A’s advantage in
solving the LWE problem for the set of parameters n,m, q, χB to be

LWEAdvn,m,q,χB

[
A
]

:=

∣∣∣∣Pr[W0]− Pr[W1]

∣∣∣∣.
The only difference between LWE(n,m, q, χB) and LWEHNF(n,m, q, χB) is that in LWE(n,m, q, χB),
the vector s is sampled uniformly at random, but in LWEHNF(n,m, q, χB), the vector s is sampled
from the B-bounded distribution χB. The two problem LWE(n,m, q, χB) and LWEHNF(n,m, q, χB)
are known to be equivalent. Hence, if LWE is hard, then LWEHNF is hard, and vice versa.

2 Post Quantum Cryptography

Today, we will briefly take a look at post-quantum cryptography. Let’s first take a look at the
current landscape of cryptography.

12-1

Source Assumptions Primitives
Block Cipher Design ⇒ AES is secure ⇒ Symmetric Crypto:

Hash Function Design SHA is secure PRF, Hash Functions

CS Theory ⇒ DLog: CDH, DDH, ... ⇒ Public Key Crypto:
Mathematics Factor: RSA, str-RSA, ... PKE, DS, Key-Exchange

Let’s see what happens to our assumptions if we had a quantum computer. The assumptions that
we use for symmetric cryptography are generally considered secure even against quantum computers.
However, the attacks on these assumptions do improve slightly. Therefore, we just need to increase
the key space (for AES) or the output space (for SHA) suitably. For assumptions that we use for
public key cryptography, they are completely broken by quantum computers. Therefore, we must
find new assumptions.

AES. Let K be a key space for a version of AES (or any PRF/PRP). Then given any output of AES,
we can recover the key k ∈ K using Grover’s algorithm in time |K|1/2. Currently, to get λ = 128
bits of classical security, we set K = {0, 1}128. If we want λ = 128 bits of quantum security, we can
set K = {0, 1}256.

SHA. Let H : {0, 1}∗ → Y be any hash function. Then, using Grover’s algorithm, we can find a
collision for H in time |Y|1/3. Therefore, if we want λ = 128 bits of quantum security, we can set
Y = {0, 1}384. Note that even in the classical setting, we have a birthday attack on H that can find
a collision in time |Y|1/2. This is why we set Y = {0, 1}256 (SHA-256) today.

DLog and Factor. Shor’s algorithm completely solves these problems in (quantum) polynomial
time. Hence, we must find new assumptions that can replace them in the quantum world.

2.1 Alternatives

Therefore, in general, symmetric cryptography is in good shape even in the quantum world. We just
need to increase the parameters suitably. For public key cryptography, we need new alternatives for
Public Key Encryption, Digital Signatures, and Key Exchange. In many scenarios, we can combine
Key Exchange with symmetric cryptography to emulate Public Key Encryption. Therefore, a lot of
the attention is given to constructing Digital Signatures and Key Exchange.

There are generally 5 families of assumptions that people currently studying for post-quantum
cryptography.

Hash-based Cryptography.

• Good:

– No additional algebraic assumption other than the fact that standard hash functions are
collision-resistant.

• Bad:

– Large signature sizes.
– Cannot do key-exchange.

Lattice Cryptography.

12-2

• Good:

– Well studied in the theory community
– Simple and fast operations.

• Bad:

– Things are big (for key-exchange).

Code-based Cryptography.

• Good:

– Very old (as old as RSA).
– Simple and fast operations.

• Bad:

– Things are big.

Isogeny-based Cryptography.

• Good:

– Based on elliptic curves (people are already very familiar with them).
– Things are small.

• Bad:

– Operations are slow.
– Very new.

Multivariate Cryptography.

• Good:

– Simple and fast operations.

• Bad:

– Things are big.

3 Hash-based Signatures

Let’s get a quick taste of hash-based signatures. The approach that we are going to take is as
follows:

1. Construct one-time signatures (OTS).
2. Upgrade OTS to a full-fledged signature scheme.

12-3

4 Lamport One-Time Signatures

Fix a hash function H : {0, 1}λ → {0, 1}λ (we only need one-wayness of the hash function, so we
can make the output space to be {0, 1}λ). Fix a message space M = {0, 1}n.

• KeyGen(1λ): Sample 2n uniformly random elements xi,b
r←− {0, 1}λ and set them to be the

signing key:

sk =

(
x1,0 x2,0 · · · xn,0
x1,1 x2,1 · · · xn,1

)
.

Then, hash each of the elements in the signing key and set them to be the public key:

pk =

(
y1,0 = H(x1,0) y2,0 = H(x2,0) · · · yn,0 = H(xn,0)
y1,1 = H(x1,1) y2,1 = H(x2,1) · · · yn,1 = H(xn,1)

)
.

• Sign(sk,m): Let m = m1m2 · · ·mn ∈M. Then, set the signature as follows

σ = (x1,m1 , x2,m2 , . . . , xn,mn .

• Verify(pk,m, σ): Let σ = (σ1, . . . , σn). For i = 1, . . . , n, check whether

yi,mi = H(σi).

If all check pass, then accept. Otherwise, reject.

Claim 4.1. If an adversary gets access to 1 signature, then it cannot forge signatures.

Proof Idea. The signatures consist of the preimages of the hash function. In order to forge a new
signature, the adversary must come up with its own preimages that hashes to elements in the public
key. Therefore, if the adversary could forge, then we can use it to invert the hash function H.

Claim 4.2. If an adversary gets access to 2 signatures, then it can forge new signatures.

Proof Idea. If the adversary gets access to the signatures for m = 00 · · · 0, and m′ = 11 · · · 1, then it
gets access to the whole signing key.

4.1 From One-Time to Many-Time Signatures

We can construct a q-time secure signature scheme from any one-time signature scheme (KeyGen′,Sign′,Verify′)
as follows.

• KeyGen(1λ): Generate q one-time signature secret-public key pairs (sk1, pk1), . . . , (skq, pkq)←
KeyGen′(1λ). It sets

sk = (sk1, . . . , skq)

pk = (pk1, . . . , pkq).

• Sign(sk,m, st = i): The signing algorithm keeps a local state st (initially set to 1) that keeps
track of how many messages it signed. On input st = i, it signs σi ← Sign′(ski,m). It sets
σ = (σi, i). It also updates the state st = st + 1.

12-4

• Verify(pk,m, σ): Let σ = (σi, i). The verification algorithm accepts if Verify′(pki,m, σi) accepts.
Otherwise, it rejects.

The downside of the construction above is that (i) public key size is large, (ii) the signing algorithm
is stateful and (iii) the signature size is large. We can remove the downside (i) by using a Merkle
tree.

4.2 Merkle Tree Construction

A Merkle tree is a way of hashing a set of strings S = {str1, . . . , strn} into one small digest h∗ such
that given any string stri, one can give a short proof that certifies that stri was contained in the
original set of strings S that was used to create h∗.

P (h∗, stri, S) V ∗(h∗, stri)
πi−−−−−−−−−−→

Using Merkle Trees, we can construct a digital signature scheme as follows.

• KeyGen(1λ): Generate q one-time signature secret-public key pairs (sk1, pk1), . . . , (skq, pkq)←
KeyGen′(1λ). It sets

sk = (sk1, . . . , skq, pk1, . . . , pkq), pk = h∗.

• Sign(sk,m, st = i): The signing algorithm keeps a local state st (initially set to 1) that keeps
track of how may messages it signed. On input st = i, it signs σi ← Sign′(ski,m). It also
computes a proof πi that certifies that pki with respect to h∗. It sets σ = (σi, pki, πi).

• Verify(pk,m, σ): Let σ = (σi, pki, πi). The verification algorithm verifies the signature σi with
respect to pki, and also verifies the proof πi for pki with respect to h∗. If both of these checks
go through, then accept. Otherwise, reject.

Security intuition. Let σ̃ = (σ̃, p̃k, π̃) be a forgery that an adversary submits.

• By the security of the Merkle tree hashing, p̃k must correspond to some public key pki that
was originally generated by KeyGen(1λ):

p̃k = pki.

• By the security of the original signature scheme in Section 4.1, σ̃ must an invalid signature
with respect to p̃k = pki.

Remarks. This is the general flavor of hash-based signature. It is possible to make upgrade
one-time signatures to a full-fledged signature scheme where the number of signatures it can support
is unbounded and the signing algorithm is also not stateful. We can also shrink the size of the
signatures significantly with additional bags of tricks. The textbook Boneh-Shoup Chapter 14 has a
very nice description of how this can be done, so please take a look if you are interested.

12-5

https://crypto.stanford.edu/~dabo/cryptobook/BonehShoup_0_4.pdf

	LWE in Hermite Normal Form
	Post Quantum Cryptography
	Alternatives

	Hash-based Signatures
	Lamport One-Time Signatures
	From One-Time to Many-Time Signatures
	Merkle Tree Construction

