CS 355 — Topics in Cryptography April 9, 2018
Lecture 3: Interactive Proofs and Zero-Knowledge

Instructors: Henry Corrigan-Gibbs, Sam Kim, David J. Wu

So far in the class, we have only covered basic cryptographic primitives like PRGs, PRF's, Digital
Signatures, and so on. These primitives consist of non-interactive “one-shot” algorithms that satisfy
some specific security properties. In the real world, these primitives are used as “tools” that are
part of bigger and more complicated interactive protocols. In the next few lectures, we are going to
discuss how to analyze these type of interactive protocols.

What does it mean for an interactive protocol to be secure? How do we prove security?

As a first step towards this goal, we are going to discuss interactive proof systems and zero-knowledge
in this lecture. This will be our first introduction to a simulation-based notion of security, which is
a very important concept in cryptography.

1 Interactive Proofs

Informally, the goal of a proof is to convince someone that a certain statement is true. A statement
can consist of expressions such as “N is the product of two 1024-bit primes” or “(g, h) is such that
h = ¢g® and a is odd”. It is not hard to see how the ability to prove such statements can be useful
for cryptographic applications.

Languages. To treat proof systems in a rigorous manner, let’s first formalize what a statement is.
Following the complexity theoretic conventions, we will treat statements with respect to an instance
of a language L. Recall that a language is simply a set of strings L C {0, 1}*. Then, a statement
consists of the tuple (z, L) or more intuitively

“x e L77

Examples:

e “N is the product of two 1024-bit primes”

N € {pq | p,q are 1024-bit primes}.

e “(g,h) is such that h = ¢® and a is odd”

(9,h) € {(9,9") | a € Zg and a is odd}.

e “Boolean formula ¢ does not have a satisfying assignment”

© € coSAT.

3-1

Intuitive notion of proofs. An interactive proof system for a language L is a protocol between
two algorithms: a (possibly unbounded) prover P and an efficient (probabilistic polynomial time)
verifier V.

P(z) V(z)

At the start of the protocol, both the prover P and the verify V' are given some instance x. At
the end of the protocol, the verifier V' either accepts (it is convinced that x € L) or rejects (it is not
convinced that z € L).

For a proof system to be useful, it must satisfy the following two properties:

1. Completeness: If © € L, then an honest prover P that just follows protocol specification
should be able to convince V.

2. Soundness: If x ¢ L, then no prover P (that can possibly cheat by deviating from the
protocol specification) should not be able to convince V.

NP. What types of languages have an interactive proof system? The simplest example is the class
of languages in NP. Let L € NP. Then, by definition, there exists an efficient algorithm M(-,-) such
that

ze L < Jwe {0,1}PY1D) st M(z,w) = 1.

Therefore, we can specify the protocol as follows:
e P(zx): Compute a witness w € {0,1}P°Y(#)) and send it to V.

e V(z): When P sends over w, check if M(x,w) = 1. Output “accept” if this is the case and
“reject” otherwise.

Why interaction? So when the class of NP languages already have “one-shot” non-interactive
proofs protocols, why do we even consider interactive proofs?

1. Every language L € NP have non-interactive proofs, but sometimes, we might want to prove
a statement that is not necessarily in NP. For example, consider the following statement in
coNP: “Boolean formula ¢ does not have a satisfying assignment.” It seems hard to prove
such a statement without some sort of interaction.

Fact: In computational complexity, the celebrated result of [3] shows that the class of languages
that have interactive proofs (with polynomial number of rounds) is precisely the class of
PSPACE.

IP = PSPACE.

We will not prove this fact in the course, but anyone curious can take a look at any textbook
on complexity theory (e.g. [1]).

3-2

2. Even if the statement to be proved is in NP, for certain certain applications, requiring P to
send over the whole witness w to V' might be too costly. By allowing additional rounds of
interaction between P and V', we can sometimes bring down the total communication between
P and V smaller than |w].

Fact: This point is related to another celebrated result in complexity theory called the PCP

Theorem. We will come back to this later in the course when we discuss SNARGSs.

3. Interactive proofs give rise to proof systems that satisfy the additional property of zero-
knowledge. This is what we are going to discuss next.

Defining interactive proofs (semi-)formally. Interactive proofs were defined in 1985 by Gold-
wasser, Micali, and Rackoff [2].

Definition 1.1 (Interactive Proofs). Let L be any language. Let (P, V') be a protocol specification
between a prover P and the verifier V. Then, we say that (V, (P, V)) is an interactive proof system
for L if the following two properties are satisfied:

e Completeness: Vx € L,
Pr[(P,V)(z) =1] >

[SURIN)

e Soundness: Vx ¢ L, VP*
Pr[(P*(z),V(z)) = 1]

IA
Wl

We note that the constants 2/3 and 1/3 are arbitrarily chosen for simplicity. We can always amplify
the completeness probability to 1 — negl(\) and the soundness probability to negl(\) with repetition.

2 Zero-Knowledge

How can we prove a statement z € L without revealing anything else about x other than the fact
that © € L? For instance, how can we prove the statement “N is the product of two 1024-bit primes’
without revealing the factorization p, q7

In this class, we will just restrict ourselves to the set of NP problems.! In this setting, for a
language L € NP, we have two parties:

)

e An honest (unbounded) prover P with input (z,w) such that w is an NP witness of z. It
follows the protocol specification exactly.

e A dishonest (PPT) verifier V* with input x. It can deviate from the protocol specification.

The goal of the verifier V* is to infer some information about z from its interaction with P.

! Zero-knowledge proofs are well-defined for any class of languages. In fact, any language in IP has a ZK proof system
assuming OWF's.

3-3

my
14
m T {Oa 1}*
ml .
\%
e re & {0, 1}
In other words, the verifier is given (i) all the transcript (mf’,...,m?y), (m{,...,m}), and (ii)
the internal coins (randomness) it used ry, ..., 7, throughout the protocol. Then, it tries to learn
additional information about z. Generally, since the V*’s messages m} ,... ,m}/ are completely

determined by P’s messages and V*’s random coins, we generally omit it for redundancy when
describing the transcript. Then, we define the view of V* as the random variable

: P P
VieWp e (g = {my 5., my 1, T

Then, our goal is to require that no adversary can gain any additional “knowledge” about z from
viewp i« (). How do we formalize this?

What is knowledge? To formalize what it means for an adversary (verifier) to not learn any new
knowledge about x, we must first reason about what “knowledge” actually is.

e Say you have N = pq, and also one of the factors p. Does this mean that you also have
“knowledge” of ¢q7 Intuitively yes because even though you don’t have the actual encoding of
“p”, you can always efficiently compute ¢ = N/p.

e Say you have an encryption of a message Encpk(z). Does this mean that you have “knowledge”
x? Intuitively no because even though you have some encoding of “z” (that information
theoretically determines x), you cannot efficiently recover x.

Therefore, in cryptography, “knowledge” is defined with respect to things that you can compute
efficiently.

Defining Zero-Knowledge. Therefore, how do we define zero-knowledge? We say that a protocol
is zero-knowledge if any information that an adversary could have derived from the transcript of
the protocol, could have originally been computed efficiently just from x (without any transcript).

Definition 2.1 (Zero-Knowledge Proofs). Let L € NP. Let (P,V,) be a protocol specification
between a (possibly unbounded) prover P and a (PPT) verifier V. Then, we say that (P, V) is an
interactive proof system for L if the following properties are satisfied:

e Completeness: Vz € L,

e Soundness: V x ¢ L,V P*

e (computational) Zero-Knowledge: V V*, 3 (PPT) Simy+ such that V z € L,
View[(P(z,w) <> V*(x))] =, Simy+«(z).
We call the algorithm Sim as the simulator.

At first, it might be useful to think about the simulator Simy« as a subroutine. Then, we
can parse the definition as follows. If there exists an adversary A that can compute any new
information about z from the transcript view[(P(x,w) <> V*(z))], then A could have just computed
that information on its own (without interacting in the protocol) by calling the simulator S(z) as a
subroutine, get a “simulated” transcript, and then computing the same information about x.

3 ZK-Proofs for NP

Now that we have defined zero-knowledge proof systems, how do we construct them? In this lecture,
we are going to construct a zero-knowledge proof system for the problem of 3-Coloring. Since
3-Coloring is NP-complete, this gives a zero-knowledge proof system for all of NP.
A graph G = (V, E) € 3-Coloring if there exists a way to assign each vertex v € V' with a color
{0, 1,2} such that no two vertices associated with an edge (u,v) € E are assigned the same color.
Formally, a graph G = (V, E) € 3-Coloring if

J¢:V —{0,1,2} such that ¥(u,v) € E, we have ¢(u) # ¢(v).

Here, the NP witness for G is the assignment .

3.1 Preliminaries: Commitments

For our ZK proof system for 3-Coloring, we rely on a primitive called commitment schemes. For
simplicity, we will just use non-interactive commitments.

Definition 3.1 (Commitments). An efficiently computable function Comm : M xR — C is a
(perfectly) binding commitment if it satisfies the following two properties:

e Hiding: For all mg,m; € M,
{Comm(mg,r) : 7 <~ R} ~ {Comm(my,7) : 7 <~ R}.
e Binding: For all mg,m; € M, rg,r1 € R, if mg # m1, then

Comm(my,r9) # Comm(my,71).

We can think of a commitment as an envelope that you can’t see inside, but binds you to a
value. Commitment schemes can be built from a variety of assumptions OWFs, DLog, RSA, etc.

3-5

3.2

3-Coloring

Theorem 3.2. If perfectly binding commitments exist, then there exists a zero-knowledge proof
system for 3-Coloring.

We specify our protocol as follows:

Start of the protocol: At the start of the protocol, the prover P is provided G and an
assignment ¢ and the verifier V' is just provided G. Before the protocol, V initializes a counter
rounds and set it rounds = 0.

Step 1: P samples a random permutation = : {0,1,2} — {0,1,2}. For each v € V, it
computes a commitment
¢y < Comm(7m(p(v)), 7).

It sends over the set of commitments {¢,},cy to the verifier V.

Step 2: Upon receiving the commitments {c¢,},cy, V samples a random edge (u,v) <+ E,
and sends (u,v) to the prover P.

Step 3: Upon receiving (u,v), P sends over the tuple (7(¢(w)), 7y, 7(w(v)),) to the verifier
V.

End of Round: Upon receiving (7(o(u)), 7y, m(¢(v)),ry), V checks that

— m(p(u)), m(p(v)) € {0, 1,2}
— w(p(u)) # 7(p(v))
— ¢, = Comm(7(p(u)),ry)

— ¢, = Comm(m(p(v)),ry)

If any of these conditions are not satisfied, then V' immediately outputs reject. Otherwise, it
sets rounds = rounds + 1. If round = k, then it outputs accept. Otherwise, it goes back to Step
1.

Completeness. Let G € 3-Coloring and let ¢ be a a valid witness for G. Then, for any (u,v) € E
and any permutation m, we have m(p(u)) # m(p(v)) and 7(p(u)), 7(p(v)) € {0,1,2} by definition.
Furthermore, since Comm is a deterministic function, the tuple (7w(¢(w)),ry, 7(p(v)),) that P
sends to V' at Step 3 must satisfy ¢, = Comm(7(¢(u)),ry,) and ¢, = Comm(mw(¢(v)), r,). Hence, the
verifier V' always accepts.

Soundness. If G ¢ 3-Coloring, then by definition, there does not exist a valid three coloring. Hence,
for any assignment ¢ = mog : V — {0,1,2} that P* uses in Step 1, there exists an edge (u*,v*) € F
such that ¢(u*) = @(v*). Assume that in Step 2, V' chooses (u,v) such that u = «* and v = v*. Let
(clry, 7y, clry, 7)) be the tuple that P* sends to V' in Step 3.

o If clr, = ¢(u*) and clr, = @(v*), or if clry,clr, ¢ {0,1,2}, then V immediately rejects.

o If clry, # @(u*), then ¢, # Comm(clr,,r,) since Comm is perfectly binding.

e Likewise, if clr, # ¢(v*), then ¢, # Comm(clr,,r,) since Comm is perfectly binding.

3-6

Hence, V' always rejects in this case.
Now, what is the probability that V' chooses (u,v) such that u = v* and v = v*?

S

Priu=u"ANv=12"]< —

n

where n = |G].
Therefore, after ¢t rounds, what is the probability that V still accepts?

n =

1\ _ant
Pr[P* gets lucky for ¢ rounds] < (1 — 2) < (e n12>

where we used the identity (14 z) < e”.

Therefore, after repeating the protocol for ¢ ~ n3 times, this probability becomes negligible
<e ",

Zero-Knowledge. To prove that the protocol satisfies zero-knowledge, we must do two things:
1. Specify an efficient simulator Sim that generates a transcript for the protocol.

2. Prove that V V*, 3 (PPT) Simy+« such that V z € L,

View[(P(z,w) < V*(x))] =, Simy+«(z).

Therefore, let us first specify a simulator as follows:
Simv* (G) :

Initialize count = 0.

Commit to a random coloring ¢ of G.

Invoke (u,v) < V*(G,c1,...,cn).

If ¢(u) # ¢(v), then ignore the transcript.

Otherwise, if ¢(u) = @(v), then keep the transcript, and set count = count + 1.

AN R

If count = ¢, then output all the transcript it kept. Otherwise, go to Step 2 and repeat.

Efficiency of the simulator. First, is Simy« efficient? Let (u,v) € E be the edge that V* submits
in Step 2 of the protocol. Since Sim originally commits to a random coloring ¢, we have that
&(u) = @(v) with probability 1/3. Hence, Simy+ will have ¢ set of transcript after approximately 3t
repetitions.

Distribution of the simulator. We must now show that the set of transcripts output by Simy«(G)

is computationally indistinguishable from the set of transcripts from the real protocol. Let’s list out
all the elements that are contained in the transcript and show why each of these components are
computationally indistinguishable.

e The commitments {c,},cv that P sends in Step 1: In the real protocol, P commits to a
valid coloring while Simy«(G) commits to a random (possibly invalid) coloring. However, by
the Hiding property of Comm, these two distribution of commitments are computationally
indistinguishable.

3-7

e The coins or equivalently, the edge (u,v) € E that V* chooses: Since Sim just runs V*, the
distribution of (u,v) in the real protocol and the distribution of (u,v) that is produced by
Simy+ are identical.

e The tuple (clry, 7y, clry, 7,) that P sends in Step 3: In the real protocol, P chooses a random
permutation 7. Hence, clr, = m(¢(u)) and clr, = 7(¢(v)) are uniformly distributed in {0, 1,2}
given that clr,, # clr,,. In the simulated distribution, Sim commits to a totally random coloring
. Therefore, given that a transcript was not discarded, clr, = ¢(u) and clr, = p(v) are
uniformly distributed given that ¢(u) # ¢(v).

References

[1] Sanjeev Arora and Boaz Barak. Computational complexity: a modern approach. Cambridge
University Press, 2009.

[2] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of interactive
proof systems. SIAM Journal on computing, 18(1):186-208, 1989.

[3] Adi Shamir. Ip = pspace. J. ACM, 39(4):869-877, October 1992.

	Interactive Proofs
	Zero-Knowledge
	ZK-Proofs for NP
	Preliminaries: Commitments
	3-Coloring

