
CS 355: Topics in Cryptography Spring 2019

Problem Set 4

Due: May 13, 2019 at 5pm (submit via Gradescope)

Instructions: You must typeset your solution in LaTeX using the provided template:

https://crypto.stanford.edu/cs355/homework.tex

Submission Instructions: You must submit your problem set via Gradescope. Please use course code
9KY4BB to sign up. Note that Gradescope requires that the solution to each problem starts on a new page.

Problem 1: Conceptual Questions [10 points]. For each of the following statements, say whether it is
TRUE or FALSE. Write at most one sentence to justify your answer.

(a) Suppose n parties give their data to a trusted curator, who answers an analyst’s query q using an
ε-differentially private mechanism M . If the n parties do not want to trust the curator, but still retain
ε-differential privacy, they can use a secure MPC protocol where n +1 parties (the data holders and
the analyst) jointly compute M over the n data points and query q .

(b) Let G be a cyclic group of prime order q with a generator g ∈ G and H : G→ {1,2,3} be a random
function. A walk on G defined as x0 ←R G and xi+1 ← xi · g H(xi) collides in O(

p
q) steps in expectation

(i.e., if icol = min{i ∈N : ∃ j < i s.t. xi = x j }, then Ex0,H [icol] ≤O(
p

q)).

(c) Let E be the elliptic curve y2 = x3 +7x +12 and P ∈ E (F103) be the point whose x-coordinate is equal
to 19. It holds 3P = P .

(d) Consider the BLS signature scheme using the pairing e :G×G→GT . Say TRUE/FALSE for each of the
following:

• If CDH is hard in G then the signature scheme is secure in the random-oracle model.

• If CDH is easy in G then the signature scheme is insecure.

(e) For all positive integers n,m, q,B , theSIS(n,m, q,B) problem is at least as hard as theSIS(n,m +1, q,B)
problem.

Problem 2: Local Differential Privacy [10 points]. The differential-privacy model we saw in class, where
a trusted curator aggregates all the data and then randomizes responses to queries, is also called the
central model of differential privacy.

In the local model of differential privacy, the users do not want to trust the aggregator, so they each
randomize their own data locally, before sending it to the aggregator. We’ll look at a very simple local DP
algorithm called Randomized Response (RR), which was proposed by Warner in 1965, four decades before
differential privacy was invented! The goal of RR is to collect sensitive statistics (e.g., “how many people
do drugs”) while allowing each individual participant in the survey some amount of deniability.

Formally, each of the n users holds a private bit bi ∈ {0,1}. The quantity we are interested in estimating
is a := 1

n

∑n
i=1 bi . Consider the following RR mechanism, that is run independently by each user:

https://crypto.stanford.edu/cs355/homework.tex
https://gradescope.com/

- Flip two unbiased coins.

- If the first coin is heads, send bi to the aggregator.

- Otherwise, look at the second coin:

- If heads, send 0 to the aggregator.

- If tails, send 1 to the aggregator.

(a) Show that RR guarantees ε-differential privacy for ε= ln(3) for each individual user’s bit.

(b) Let b̂i be the i -th user’s randomized response. Show that the untrusted aggregator that receives all
these noisy bits can compute an unbiased estimate â of a (i.e., E[â] = a).

(c) Show that the estimation error â −a has standard deviation O(1/
p

n).

(d) How much worse is this than what we can achieve in the central model? Suppose all users send their
bits bi to a trusted curator that uses the Laplace mechanism to output a noisy estimate âc of a that is
ln(3)-differentially private. Show that the estimation error âc −a has standard deviation O(1/n).

(e) Extra credit [3 points]. Design a general version of the RR mechanism that provides ε-differential
privacy for each user’s individual bit, for any fixed ε> 0. Show that your mechanism satisfies ε-DP
in the local model and that the standard deviation of the untrusted aggregator’s estimation error is

O
(

1
ε
p

n

)
.

Problem 3: Discrete Log inZ∗
p [12 points]. The discrete-log algorithms we have seen so far are generic,

in that they work for every group. There are beautiful special-purpose algorithms for solving discrete log
faster in Z∗

p (for prime p). We sketch some of the ideas behind these non-generic discrete-log algorithms,
and we hope to explain why they have these funny sub-exponential running times.

Let p = 2q +1 be a prime such that q is also prime. Let g ∈Z∗
p be a generator of the order-q subgroup of

Z∗
p .

(a) Say that an integer is B-smooth if it factors into primes less than B . A good approximation is that:

Pr
x

R←−Zq

[
(g x mod p) is B-smooth

]≈ u−u where u = ln p

lnB
.

Let B(p) = exp(
√

ln p · lnln p). Show that the probability that a random element of the subgroup of
in Z∗

p generated by g is B(p)-smooth is at leastΩ(1/B(p)).

(b) You are given:

• an integer h = g x ∈Z∗
p ,

• all of the primes (π1, . . . ,πk) of size at most B(p), and

• the discrete logs (logg π1, . . . , logg πk) of these small primes modulo p (assume for simplicity
that all of these discrete logs exist).

Give an algorithm that uses this information to recover x ∈ Zq with constant probability in time
poly(B(p)). You should show that your algorithm is correct and that it runs in the stated time.

(c) Extra credit [6 points]. Show how to generate the discrete logs needed for Part (b) in time poly(B(p)).
This shows that it’s possible to compute discrete logs inZ∗

p in time poly(B(p)) = exp(O(
√

log p loglog p)).

Problem 4: Somewhat-homomorphic encryption from pairings [10 points]. In this problem, you will
construct a “somewhat homomorphic” public-key encryption scheme: it allows computing any number of
additions and a single multiplication. Let G1 be a cyclic group of prime order p and g ∈G1 be a generator
of the group. Consider the following two algorithms:

Gen(g) → (pk,sk) : Choose random a,b,c ←R Zp such that c 6= ab (mod p). Set ga = g a , gb = g b , and
gc = g c . Output the public key pk= (g , ga , gb , gc) and the secret key sk= (a,b,c).

Enc(pk= (g , ga , gb , gc),m) → ct : Given a message m ∈Zp , choose r ←R Zp and output ct= (g m g r
a , g m

b g r
c).

(a) Give a Dec algorithm that takes a secret key sk and a ciphertext ct = (u, v) and outputs m. Your
algorithm needs to be efficient only if the message m lies in some known small space (say 0 ≤ m < B
as an integer, for some bound B =O(polylog(p))).

(b) Give an algorithm Add(pk,ct,ct′) → ctsum that takes as input two ciphertexts ct and ct′, that are
encryptions of m,m′ ∈Zp respectively, and outputs an encryption of m +m′ mod p.

Now let G2,GT be two other cyclic groups of order p (i.e., |G1| = |G2| = |GT |), e : G1 ×G2 → GT be a
pairing, and h ∈G2 and e(g ,h) ∈GT be generators of G1 and GT respectively. Furthermore, let (pk′,sk′) ←
Gen(h) be the public and secret keys obtained by running Gen using the group G2. Consider now the
following algorithm:

Mult(ct,ct′) : On input two ciphertexts ct= (u, v) ← Enc(pk,m) and ct′ = (u′, v ′) ← Enc(pk′,m′), output
the tuple (w1, w2, w3, w4) ∈G4

T where

w1 = e(u,u′), w2 = e(u, v ′), w3 = e(v,u′), w4 = e(v, v ′) .

(c) Let α1, . . . ,α4 ∈ Zq such that wi = e(g ,h)αi (i.e., αi is the discrete log of wi in GT). Show that
m ·m′ mod p can be expressed as a linear function of α1, . . . ,α4. (You need not give an explicit
formula for the linear function.)

(d) Show how to efficiently recover m ·m′ mod p from w1, . . . , w4 and the two secret keys sk and sk′. As
in Part (a), you can assume that the messages m,m′ lie in some known small space.

(e) Extra credit [3 points]. Show that if the DDH assumption holds in G1 then E = (Gen,Enc,Dec) is a
semantically secure public-key encryption scheme.

Problem 5: Short Integer Solutions [10 points]. (We have included a few useful definitions from lecture
as an appendix to this problem set.)

(a) Give an efficient algorithm for SIS(n,m, q, q).

(b) Construct a function fn,m,q : Xn,m,q →Yn,m,q such that an adversary that breaks the one-wayness of
fn,m,q with probability ε can be used to solve SIS(n,m, q,1) with probability ε. (Think of n, m, and
q as all being polynomial in the security parameter λ.) For the function fn,m,q you construct, you
should specify the domain Xn,m,q and the codomain Yn,m,q . You need not formally prove the security
of your construction.

(c) Let H : {0,1}n → {0,1}
p

n be a collision-resistant hash function (CRHF). Given an n-bit string as input,
let there exist an algorithm that computes H in time T (n).

We say that H is “updatable” if, for all x, y ∈ {0,1}n of Hamming distance one (i.e., that differ only in a
single bit position), there is an algorithm U that maps:

U (x, H(x), y) 7→ H(y),

and that runs in time o(T (n)). Notice that standard CHRFs, such as SHA2, are not updatable—if you
change one bit of the input you have to recompute the output from scratch.

In lecture, we saw a very elegant SIS-based construction of a collision-resistant hash function HSIS.
Show that the HSIS is updatable. In particular, construct the algorithm U , explain its running time,
and argue that computing U is faster than recomputing HSIS.

(d) Extra credit [5 points]. Show how to build an updatable collision-resistant hash function Hbig : {0,1}n2 → {0,1}
p

n

from a standard collision-resistant hash function H : {0,1}n → {0,1}
p

n .

(e) Extra credit [1 points]. Give a one-sentence definition of an updatable digital signature scheme,
following the definition of updatable CRHFs. Explain how to use your solution to Part (b) to construct
an updatable digital signature scheme.

Problem 6: Time Spent [3 points for answering]. How long did you spend on this problem set? This is
for calibration purposes, and the response you provide will not affect your score.

Problem 7: Optional Feedback [0 points]. Please answer the following questions to help us design
future problem sets. You do not need to answer these questions, and if you would prefer to answer
anonymously, please use this form. However, we do encourage you to provide us feedback on how to
improve the course experience.

(a) What was your favorite problem on this problem set? Why?

(b) What was your least favorite problem on this problem set? Why?

(c) Do you have any other feedback for this problem set?

(d) Do you have any other feedback on the course so far?

https://stanforduniversity.qualtrics.com/jfe/form/SV_6XTKIK2cWZyqpRr

Useful definitions

SIS(n,m, q,B): Let n,m, q,B ∈N be positive integers. For a given adversary A, we define the following
experiment:

• The challenger samples A ←R Zn×m
q , and gives A to the adversary A.

• The adversary A outputs some non-zero vector x ∈Zm .

We define A’s advantage in solving the SIS problem for the set of parameters n,m, q,B , denoted
SISAdvn,m,q,B

[
A

]
, to be the probability that A ·x = 0 (mod q) and ‖x‖∞ ≤ B .

Recall that, for a vector x = 〈x1, . . . , xm〉 ∈Zm , the L∞-norm of the vector x is ‖x‖∞ := maxi |xi |.

A function ensemble
{

fλ :Xλ →Yλ

}
λ∈N is one way if:

1. there exists an efficient algorithm that takes as input λ (represented in unary), an x ∈X , and
outputs fλ(x) and

2. for every efficient algorithm A,

Pr
[

f (A(f (x))) = f (x) : x ←R Xλ

]≤ negl(λ).

	Problem 1: Conceptual Questions [10 points].
	Problem 2: Local Differential Privacy [10 points].
	Problem 3: Discrete Log in Z*p [12 points].
	Problem 4: Somewhat-homomorphic encryption from pairings [10 points].
	Problem 5: Short Integer Solutions [10 points].
	Problem 6: Time Spent [3 points for answering].
	Problem 7: Optional Feedback [0 points].

