
CS 355: Topics in Cryptography Spring 2019

Problem Set 5

Due: June 7, 2019 at 5pm (submit via Gradescope)

Instructions: You must typeset your solution in LaTeX using the provided template:

https://crypto.stanford.edu/cs355/19sp/homework.tex

Submission Instructions: You must submit your problem set via Gradescope. Please use course code
9KY4BB to sign up. Note that Gradescope requires that the solution to each problem starts on a new page.

Problem 1: Conceptual Questions [10 points]. For each of the following statements, say whether it is
TRUE or FALSE. Write at most one sentence to justify your answer.

(a) Let e :G×G→GT be a pairing for an elliptic curve group G. If the discrete log problem in G is easy,
then the BDDH problem for e is easy as well.

(b) Suppose that LWE is hard for some parameter values n, m À n, and q and noise vector e sampled
from some distribution χm over Zm

q . Then LWE is also hard for parameter values n, 2m, and q and

noise vector e sampled from the distribution χ̂2m =
{[

e
e

]
: e ←R χm

}
over Z2m

q .

(c) For every large enough n ∈N, m = n2, q = n and B = n/4, there exists a matrix A ∈Zm×n
q such that

every vector u ∈Zm
q can be written in the form u = As+e for some s ∈Zn

q and e ∈ [−B ,B ]m .

(d) Given an encryption of a message m ∈ {0,1}n in a private-key FHE scheme, it is possible to create a
valid encryption of an arbitrary message m′ ∈ {0,1}n , without access to the private key.

(e) Every designated-verifier SNARG can be converted into a public-verifier SNARG by attaching the
verification state to the public CRS (common reference string).

https://crypto.stanford.edu/cs355/19sp/homework.tex
https://gradescope.com/


Problem 2: On The Importance of Elliptic-Curve Point Validation [10 points]. Let E : y2 = x3+ Ax+B
be an elliptic curve over Fp , where q := |E(Fp )| is a prime number and P ∈ E(Fp ) is a generator. Observe
that the elliptic-curve group addition formulae are independent of the parameter B of the curve equation.
In particular, for every curve Ê : y2 = x3 + Ax + B̂ for some B̂ ∈ Fp , applying the formulae for addition in
E(Fp ) to any two points V̂ ,Ŵ ∈ Ê(Fp ) gives the point V̂ �Ŵ ∈ Ê(Fp ).

As a result, all parties in a cryptographic protocol must verify that adversarially chosen points are
on the right curve, and failing to do so may break security. We exemplify this by considering a variant of
elliptic-curve Diffie-Hellman key exchange in which the server uses the same key pair across multiple
sessions. More specifically, the server holds a fixed secret key α←R Zq and advertises (e.g., in its TLS
certificate) the corresponding fixed public key αP ∈ E(Fp ). A client connects to the server by choosing
β←R Zq , computing V = βP , and sending V to the server. Both sides then compute the shared secret
W =αβP . For simplicity, we assume that the server then sends the message Es(W,“Hello!”) to the client,
where (Es ,Ds) is some symmetric cipher.

(a) Explain how the server can check that the point V it receives from the client is indeed in E(Fp ).

(b) Suppose there exists a curve Ê : y2 = x3 + Ax + B̂ such that |Ê(Fp )| is divisible by a small prime t
(i.e., t =O(polylog(q))). Show that if the server does not check that V ∈ E(Fp ), a malicious client can
efficiently learn α mod t . You may assume one can efficiently find a point of order t in Ê(Fp ).

(c) Use Part (b) to show how a malicious client can efficiently learn the secret key α, if the server does not
check that V ∈ E (Fp ). You may assume that if B̂ ←R Fp , then |Ê (Fp )| is uniform in

[
p +1−2

p
p, p +1+2

p
p

]
and is efficiently computable. (As in Part (b), you may assume that whenever the order of a curve has
a small prime factor t , one can efficiently find a point of order t on that curve.)

Problem 3: Private Information Retrieval from Fully Homomorphic Encryption [10 points].

(a) Show how to use an FHE scheme to construct a single-server one-round PIR scheme in which the
client uploads O(logn) ciphertexts to the server, for an n-bit database, and the server responds with
a single ciphertext to the client.

(b) Say that the database contains n pairs (namei , salaryi ). The client holds a string σ ∈ {0,1}` and wants
to learn the sum of the salaries of the people whose names begin with the string σ. Use FHE to
construct a single-server one-round PIR scheme in which the client uploads ` FHE ciphertexts and
the server responds with O(log(n ·SALARY_MAX)) ciphertexts.

(c) Suppose that you have a somewhat homomorphic encryption scheme that supports computing
boolean circuits consisting of only OR and AND gates of AND-depth d +1 (i.e., there are at most d +1
AND gates between any input and the output wire) for some constant d ≥ 2. Construct a single-server
one-round PIR scheme in which the client sends O(n1/d ) ciphertexts to the server and the server
replies with a single ciphertext. Note that the constant in the big-O can depend on d . (It is actually
sufficient to have an FHE scheme that supports circuits of AND-depth O(logd) but it is not required
in this problem.)



Problem 4: Key-Exchange from LWE [18 points]. In this problem, we will formalize the concept of a
non-interactive key exchange (NIKE) protocol, and then construct it from LWE. NIKE protocols are a core
component of Internet protocols like TLS, and the lattice-based NIKE that we develop in this problem
is a simplified variant of some of the leading candidates in the NIST competition for standardizing
post-quantum key-exchange.

A non-interactive key exchange (NIKE) protocol for a key space K consists of the following PPT
algorithms:

• Setup
(
1λ

) → pp: On input the security parameter λ, the setup algorithm outputs the public
parameters pp.

• ClientPublish
(
pp

)→ (priv,pub): On input the public parameters pp, the client-publish algorithm
outputs a secret value priv, and a public message pub.

• ServerPublish
(
pp

) → (priv,pub): On input the public parameters pp, the server-publish algo-
rithm outputs a secret value priv, and a public message pub.

• KeyGen
(
priv,pub

) → key: On input a secret value priv, and a public message pub, the key
generation algorithm outputs a key key ∈K.

Correctness. We require that for all pp← Setup(1λ), (pub0,priv0) ←ClientPublish(pp), (pub1,priv1) ←
ServerPublish(pp), we have

Pr
[
KeyGen

(
priv0,pub1

)=KeyGen
(
priv1,pub0

)]= 1−negl(λ).

Security. For a NIKE protocol (Setup,ClientPublish,ServerPublish,KeyGen), we define the following
two experiments:

Experiment b (b = 0,1):

• The challenger computes the following:

pp← Setup(1λ),
(priv0,pub0) ←ClientPublish(pp),
(priv1,pub1) ← ServerPublish(pp),
key0 ←KeyGen

(
priv0,pub1

)
,

key1 ←R K.

It provides (pp,pub0,pub1,keyb) to the adversary.

• The adversary outputs a bit b̂ ∈ {0,1}.

Let Wb be the event that A outputs 1 in Experiment b. Then, we say that a NIKE protocol is
secure if ∣∣∣Pr[W0]−Pr[W1]

∣∣∣= negl(λ).



(a) Explain in words why the security definition above captures our intuitive notion of security for
key-exchange.

(b) Construct a NIKE protocol from the decisional Diffie-Hellman assumption (DDH).1 Use the following
setup algorithm:

Setup(1λ) → pp: Let G be a cyclic group of prime order p for which the DDH problem is hard, and
let g ∈G be a generator. Set pp= (G, g ).

You should specify the key space K, define the algorithms
(
ClientPublish,ServerPublish,KeyGen

)
,

and prove correctness/security of your scheme under the DDH assumption.

(c) Consider the following NIKE protocol:2

Let n = poly(λ), q,χB be parameters for which LWEHNF(n,n, q,χB ) and LWEHNF(n,n+1, q,χB ) is hard.
Recall from lecture that in practice, for λ= 128, we use n ≈ 800.

Define the key space K= {0,1} and consider the following algorithms.

• Setup
(
1λ

)→ pp: Sample a matrix A ←R Zn×n
q and set pp= A.

• ClientPublish
(
pp

) → (priv,pub): Sample vectors s ← χn
B , e ← χn

B . Then, set priv = s, and pub=
AT s+e.

• ServerPublish
(
pp

)→ (priv,pub): Sample vectors s ← χn
B , e ← χn

B . Then, set priv = s, and pub=
As+e.

• KeyGen
(
priv,pub

)→ key: Let priv= s ∈Zn
q and pub= b ∈Zn

q . The key generation algorithm first
samples a small noise term e ← χB . Then, if ‖〈s,b〉+e‖∞ ≤ ⌊

q/4
⌉

, set key = 0. Otherwise, set
key= 1.

Suppose that q is prime and chosen to satisfy 4nB 2/q = negl(λ). Prove that the protocol satisfies
correctness. For the proof, feel free to use the following fact (you do not need to prove this fact):

For any prime q , for A ←R Zn×n
q any two non-zero vectors s0,s1 ∈Zn

q , and c ∈Zq ,

Pr
A←Zn×n

q

[
sT

0 As1 = c
]= 1/q −negl(λ),

where the probability is over the random choice of A.

(d) Prove that the protocol above is secure assuming LWEHNF(n,n, q,χB ) and LWEHNF(n,n +1, q,χB ).
The definition of LWEHNF is on the last page of this problem set. [Hint: Use a hybrid argument.]

1Definition 10.8 in Boneh-Shoup (pg. 405).
2We restrict the key space to K = {0,1} for simplicity. To get a NIKE protocol for K = {0,1}128, we can simply run 128 parallel

instances of the protocol using the same public matrix A.

https://crypto.stanford.edu/~dabo/cryptobook/BonehShoup_0_4.pdf


Problem 5: SNARGs in the Random Oracle Model [12 points]. In this problem, we will show how to
leverage probabilistically-checkable proofs (PCPs) to construct a succinct non-interactive argument
(SNARG) in the random oracle model. We will rely on the following adaptation of the famous PCP
theorem:

Theorem (PCP). Let L be an NP language. There exists two efficient algorithms (P ,V) defined as
follows:

• The prover algorithm P is a deterministic algorithm that takes as input a statement x ∈ {0,1}n , a
witness w ∈ {0,1}h and outputs a bitstring π ∈ {0,1}m , where h,m = poly(n). We refer to π as the
proof string.

• The verifier algorithm Vπ is a randomized algorithm that takes as input a statement x ∈ {0,1}n and
has oracle access to a proof string π ∈ {0,1}m . The verifier reads O(1) bits of π. The verifier chooses
the bits it reads nonadaptively (i.e., they can depend on the statement x, but not on the values of
any bit in π).

Moreover, (P ,V) satisfy the following properties:

• Completeness: For all x ∈L, if w is a valid witness for x, then

Pr[Vπ(x) = 1: π←P(x, w)] = 1.

• Soundness: If x ∉L, then for all π ∈ {0,1}m ,

Pr[Vπ(x) = 1] ≤ 1/2.

(a) Let λ be a security parameter and let H : {0,1}∗ → {0,1}λ be a collision-resistant hash function. Use H
to construct a commitment scheme (Commit,Open,Verify) with the following properties:

• Commit(x) → c: The commitment algorithm should take a message x ∈ {0,1}m and output a
commitment c ∈ {0,1}λ.

• Open(x,c, i ) → σ: The open algorithm takes a message x ∈ {0,1}m , a commitment c ∈ {0,1}λ,
and an index i ∈ [m], and outputs an opening σ.

• Verify(c, i ,b,σ) → {0,1}: The verification algorithm takes a commitment c ∈ {0,1}λ, an index
i ∈ [m], a value b ∈ {0,1}, and an opening σ, and outputs a bit.

Show that your commitment scheme satisfies the following properties:

• Completeness: For all x ∈ {0,1}m and i ∈ [m],

Pr[Verify(c, i , xi ,σ) = 1: c ←Commit(x);σ←Open(x,c, i )] = 1.

• Binding: For all efficient adversaries A, if we set (c, i , (b,σ), (b′,σ′)) ←A(1λ), then

Pr[b 6= b′ and Verify(c, i ,b,σ) = 1 =Verify(c, i ,b′,σ′)] = negl(λ).

• Succinctness: The commitment c output by Commit and opening σ output by Open satisfy
|c| =O(λ) and |σ| =O(λ logm).



In other words, the commitment scheme (Commit,Open,Verify) allows a user to succinctly commit
to a long bitstring and then selectively open up a single bit of the committed string. (In this question,
we do not require any hiding properties from the commitment scheme.)

(b) Let L be an NP language (with statements of length n). Show how to construct a 3-round succinct
argument system for L using your commitment scheme from Part (a). Specifically, your argument
system should satisfy perfect completeness, have soundness error negl(λ) against computationally-
bounded provers, and the total communication complexity between the prover and the verifier
should be poly(λ, logn). In particular, the communication complexity scales polylogarithmically
with the length of the NP statement. [Hint: Use the PCP theorem.]

(c) Explain how to convert your succinct argument from Part (b) into a SNARG in the random oracle
model.

Problem 6: Time Spent [3 points for answering]. How long did you spend on this problem set? This is
for calibration purposes, and the response you provide will not affect your score.

Optional Feedback [0 points]. Please answer the following questions to help us design future problem
sets. You do not need to answer these questions, and if you would prefer to answer anonymously, please
use this form. However, we do encourage you to provide us feedback on how to improve the course
experience.

(a) What was your favorite problem on this problem set? Why?

(b) What was your least favorite problem on this problem set? Why?

(c) Do you have any other feedback for this problem set?

(d) Do you have any other feedback on the course so far?

https://stanforduniversity.qualtrics.com/jfe/form/SV_6XTKIK2cWZyqpRr


Appendix: Definition of LWE in Hermite Normal Form.

We review the formal definitions of the Learning with Errors problem in Hermite Normal Form. Note that
in this variant of the LWE problem, the vector s is sampled from the B-bounded error distribution χB

instead of the uniform distribution. This version of the LWE problem is known to be as hard as the
standard LWE problem.

LWEHNF(n,m, q,χB ): Let n,m, q,B ∈N be positive integers, and let χB be a B-bounded distribution
over Zq . For a given adversary A, we define the following two experiments:

Experiment b (b = 0,1):

• The challenger computes

A ←R Zm×n
q , s ←χn

B , e ←χm
B , b0 ← A ·s+e, b1 ←R Zm

q ,

and gives the tuple (A,bb) to the adversary.

• The adversary outputs a bit b̂ ∈ {0,1}.

Let Wb be the event that A outputs 1 in Experiment b. Then, we define A’s advantage in solving the
LWEHNF problem for the set of parameters n,m, q,χB to be

HNF-LWEAdvn,m,q,χB

[
A

]
:=

∣∣∣Pr[W0]−Pr[W1]
∣∣∣.
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