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Lecture 11: Generic Discrete-Log Algorithms

Dima Kogan

Last lecture, we’ve seen two examples of real-world cryptanalysis: The first exploited the fact that many
RSA public keys shared a common factor (due to insufficient randomness when selecting the primes).
The second attack exploited the fact that primes were chosen from a bad distribution.

Today, we’ll look at classic cryptanalytic algorithms for the discrete-log problem.

1 Generic Discrete-Log Algorithms

Recall: the discrete-log problem in a cyclic group G of order q = |G|: given a generator g ∈ G and a
challenge h = g x ∈G for a random x ∈Zq , find x.

Naive algorithm: exhaustive search. Compute g a for 0 ≤ a < q and compare with h. Requires O(q)
group operations.

Baby-Step Giant-Step Algorithm [1]

Let B ←dpqe. For h = g x ∈Gwhere 0 ≤ x < q , we can write:

x = a +B ·b where a,b ∈ {0,1, . . . ,B −1} .

Then

h = g x = g a+B ·b

h · g−a = g B ·b .

The algorithm finds a and b as following:

compute B ←dpqe.

for b = 0,1, . . . ,B −1, compute g Bb and store in a searchable data structure T [g Bb] = b.

for a = 0,1, . . . ,B −1:

compute t ← h · g−a

if t ∈ T , let b ← T [t ], and output x ← a +B ·b.

The algorithm is deterministic and always finds the discrete log. It’s running time is O(
p

q log q) bit
operations (since group elements are log q bits each).

What’s the main disadvantage of this algorithm? It takes space O(
p

q log) bits.

Pollard’s Rho Algorithm [2]

The first observation is that if we find a,b, a′,b′ ∈Zq such that

g ahb = g a′
hb′



and b 6= b′, then we can find the discrete log of h as:

logg (h) = a −a′

b −b′ (mod q) .

Consider now a random walk on a group G , which is a sequence

u1 → u2 := f (u1) → u3 := f (u2) → . . . → ui+1 := ui → . . .

for some random function f :G→G. The second observation is that such a random walk of lengthΘ(
p

q)
will, by the Birthday Paradox, “collide with itself”, i.e., ui+` = ui for some i , l =O(

p
q).

The idea behind Pollard’s Rho algorithm is to construct a pseudorandom walk on Gwith the following
properties:

1. The starting point is u1 = g a1 hb1 for some random a1,b1 ←R Zq .

2. Each step in the walk is a point ui = g ai hbi where we know ai ,bi ∈Zq .

3. The walk “behaves like a random walk”, and thus collides with itself afterΘ(
p

q) steps.

The problem is that if we just choose use some standard hash function as our random function f ,
then even if we know ui = g ai hbi , we don’t know the corresponding ai+1,bi+1 of ui+1 := f (ui ). Instead, we
choose an arbitrary partitions of G to three sets G = S0 ·∪S1 ·∪S2 and define f as following:

f (u) =


u2 if u ∈ S0

g ·u if u ∈ S1

h ·u if u ∈ S2

.

Note that each step in the walk can be computed using a single group operation. A ideal way to define
the partitions is by using some hash function s :G→ {0,1,2}, which would make the walk more “random”.
But for speed, one often simply looks on the bit representation b(u) of u ∈G as an integer, and then takes
s(u) := b(u) mod 3 (or probably uses 4 sets with a different step for each).

Note that if ui = g ai hbi , then

(ai+1,bi=1) =


(2ai ,2bi ) if u ∈ S0

(ai +1,bi ) if u ∈ S1

(ai ,bi +1) if u ∈ S2

,

so Property 2 above holds.
The walk is deterministic and not really random, but heuristically it behaves like a random walk and

so afterΘ(
p

q) steps, we have:
g ai hbi = g a j hb j ,

and we can recover logg (h).
Why is it important that f above depends only on ui and not on the specific representation (ai ,bi )?

Because if the function would have depended on the representation, than two colliding segments of the
walk would have diverged rather than “merging” after the collision.

A naive implementation would still require Õ(
p

q) space, but we can do much better using Floyd’s cycle
finding algorithm (“the turtle and the hare ”): at each step we only maintain (ui , ai ,bi ) and (u2i , a2i ,b2i )
(and we can compute u2i → u2(i+1) by taking two consecutive steps of the walk), and we continue until
ui = u2i at which point we recover the discrete log as above. This uses only O(log q) space.



2 Lower Bound for Generic Algorithms

All of the above discrete-log algorithms are generic: they do not exploit any properties of the representation
of the group elements, but rather only use the group operation as a black box.1 We would like to formally
model this type of algorithms.

Definition 1. An encoding of a group G of prime order q is an injective function σ :G→ {0,1}dt log qe for
some t > 0.

We think ofσ as assigning labels to the group elements, and we denote the set of labels L= {0,1}dt log qe.
A generic discrete-log algorithm for a group G of order q is a probabilistic algorithm that:

• Gets as input the order of the group q , as well as the labels σ(g ),σ(h) ∈L.

• Gets black box access to the group operation. More specifically, the algorithm gets oracle access to
an oracle O :L×L→L, such that O(σ(g ),σ(h)) =σ(g h).

• Outputs an integer x ∈Zq .

The success probability of a generic discrete-log algorithm A for a group G is:

Succ(A,G) := Pr
[
A(q,σ(g ),σ(g x )) = x : σ←R LG injective, g ←R G, x ←R Zq

]
, (1)

where by LG is shorthand for the set of all functions from G to L, and we further restrict ourselves to
injective functions only.

What about oracle access to computing inverses? We can allow the algorithm oracle access to comput-
ing inverses as well (and the result below still holds), or we can assume that the algorithm can compute
the inverse g−1 = g q−1 using O(log q) multiplications (by repeated squaring).

Theorem 2 ([3]). If A is a generic discrete-log algorithm that makes m queries to the group oracle, then
Succ(A, q) ≤O(m2/q).

Proof. Consider the following two games:

1An example of a non-generic algorithm would be a discrete-log algorithm for F∗p that uses the structure of Fp . Such an algorithm
could for example use addition and subtraction in Fp . You will see such an algorithm in the next homework assignment.



Adversary Challenger

g ←R G, x ←R Zq , σ←R LG injective

σ(g ),σ(g x )

Repeat m times{
σ(ui ),σ(vi )

σ(ui vi )

y ∈Zq

Check x
?= y

Game 1

Adversary Challenger

Initialize empty table T ∈L×Zq [X ]

σ1,σx ←R L (distinct)

add mappings (σ1,1) and (σx , X ) to T

σ1,σx

σu ,σu

Lookup (σu ,u), (σv , v) in T

Check if the polynomial u + v is in T :

if yes:

reply with σu+v

Repeat m times if no:

choose σu+v ←R L from all unused labels

add (σu+v ,u + v) to T

reply with σu+v

σu+v

y ∈Zq

Choose x ←R Zq and check x
?= y

Game 2

Game 1 corresponds to the execution of a generic discrete log algorithm.
In Game 2, x ←R Zq is chosen independently at random at the end of the game, so:

≤ Pr
x,σ

[A wins in Game 2] = 1/q .



Moreover, observe that view of the adversary in Game 2 is “almost identical” to his view in Game 1: the
only problem is that if there exists two polynomials f and f ′ in T such that f (x) = f ′(x), then this means
that there are two queries to which the challenger has responded inconsistently. Otherwise, if no such
pair of polynomials exists, then all responses are consistent, and the view of the adversary is identical to
Game 1.

Since all polynomials in T are linear, the probability over x that f (x) = f ′(x) is at most 1/q (since f − f ′

has at most one root over Fq ). Let B be the the “bad” event that the games are inconsistent. Therefore

Pr
x,σ

[B ] = Pr
x,σ

[
⋃

f , f ′∈T
f 6≡ f ′

f (x) = f ′(x)] ≤ (m +2)(m +1)

2
·1/q .

Overall, the probability that the adversary wins in Game 1 is at most the probability that the adversary
wins in Game 2 plus the probability that the games are different. More formally,

Pr
x,σ

[A wins in Game 1] = Pr
x,σ

[A wins in Game 1∧¬B ]+ Pr
x,σ

[A wins in Game 1∧B ]

= Pr
x,σ

[A wins in Game 2∧¬B ]+ Pr
x,σ

[A wins in Game 1∧B ]

≤ Pr
x,σ

[A wins in Game 2]+ Pr
x,σ

[B ]

≤ 1/q +O(m2/q) .

Non generic attacks

On the next homework assignment, you will see an example of a non-generic discrete-log algorithm that
runs in subexponential time exp(O(

√
log q loglog q)).
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