CS 355 Lecture 13 : Pairings - based Cryptography

2

Last week: Elliptic curves

Size of group deneuts complexity of group operation

Goal: group & with better tradeoff between efficiency and hardvess of DLog than F_p^*

Lo non-generic attacks

Today: Pairing-based Cryptography

=> exploiting additional structure of elliptic curve groups

Many applications : - DLog attacks - 3-party key exchange - short signatures - Identity - based encryption

Logistics : HW 4 out today ? Due May 24th

Brief recap on Elliptic curves

For an elliptic curve E: $y^2 = x^3 + Ax + B$ the points on E over #p form a group E(#p) of order #E(Fp) & p (Hasse's Hearem) $E(\#_{e})$ The curve E over R: integer solutions of E taken mod P

· Point representation

a point $P \in E(F_p)$ is of the form P=(x, y) where $x, y \in F_p$ L> we need 2 log(p) bits to represent P

L> Point compression: Given x, the coordinate y is determined by E up to a Sign $(\gamma = \pm (x^3 + hx + B))$

We can represent P as (x, sgu(r)) using log(p) + 1 bits

4

 $E(F_p)$ ₽₽ ₽ log(p) log(p) + 1element size ~ complexity of the group operation che # of multiplications in FFp 1 multiplication * 2 Õ(3 Tigr) O(TP) best Dlog algorithm

V group otorder a • A change of notation assume a #E(Fr) = a $E(F_{P})$ group $\mathsf{P}=(\mathsf{x},\mathsf{y})$ element ga.gb = ga+b group operation P ⊞ Q

We can also vic 6.2 61 7 delive astronge 6.4 Porives Pairings Credic groups of order q Definition: A (symmetric) pairing e: G × G → G, is a mapping with the following properties: - Bilinearity: $\forall a, b \in \mathbb{Z}_q$, $g \in G$: $e(g^a, g^b) = e(g, g)^{ab}$ - Non-dogenerate: if g generates G, then e(g,g) generates G, - Efficiency: the mapping e can be efficiently computed GWhy von-degenerate: He mapping $e(g^a, g^b) = 1$ is bilinear Why efficient: the CDH mapping e(ga,gb)=gab is bilivear but usually assured to be hard to comple Q: If a pairing e: 6 × 6 > 67 exists, what can you say about the hardness of DDH in 6? $\longrightarrow (g^a, g^b, g^{ab}) \approx^c (g^a, g^b, g^r)$

Why pairings?

· Originally: attacks on discrete log over E(IFp)

For some elliptic curve groups $E(F_0)$, there exists a bilinear map from $E(F_0)$ to G_T , where G_T is a subgroup of F_{px} for a small constant or (e.g. k=2)

[Merezes, Okamato, Vanstore '93] DLog over $E(F_P)$ can be mapped to DLog over $F_P \times \int O(T_P) = \frac{2^{O(3)} \pi \log P}{2^{O(3)} \pi \log P}$

If k is small enough, mapping Dlog to Fox gives a laster attack both asymptotically and in practice.

· Bug => Feature": [Joux, '00] [Barch, Franklin '01]

4 if p (or or) is large enough, security is preserved and we can exploit the additional structure of the pairing to build new schemes for which we know no constructions from non-pairing groups (eg. Fp)

Application 1: 3-party Key-exchange [Jonx, 00]

Recall classic Diffie - Hellman Key exchange: Alice $[a \in \mathbb{Z}_q]$ Bob $[b \in \mathbb{Z}_q]$ g^a Security: (ga, gb, gab) ≈ (ga, gb, gr) by DDH Essentially relies on the group operation being "1-linear": it is easy to compute linear relations in the exponent but difficult to compute quadratic relations What about 3 parties? Bob [b 2 Zy] g^a Bob [b 2 Zy] g^c Chocle [c 2 Zy] Alice computes $e(g^b, g^c)^a$ \implies Bob computes $e(g^a, g^c)^b$ Charlie computes e(g^a.g^b)^c Shared key: e(gg) abc Security: Bilinear DDH (BDDH) assumption (g, g, gb, gc, e(g,g) abc) ~ (g, ga, gb, gc, e(g,g)) Pairings make it easy to compute quadratic relations in the exponent, but computing cubic relations should be hard. Open problems: * N-party Key exchange for N>3. would require a multilinear map (or indistinguistability obluscation) 45 some candidates but questionable security and for from practical * 3-party key exchange from other assumptions (eg. lattices)

Application 2 : Short Signatures [Boreh, Lynn, Shacham '01]

Existing signature candidates: (128-bit level security)

Scheme	Group	Best attack	< Group Size	Signature	length
RSA	ZN	20(3(10))	20486:15	1 group element	lous hits
ECDSA	E(#a)	OCTP)	256 bits	2 gour dements	s 512 bits
Schnorr	E(Fp)	0(17)	256 bits	1 group dement, 14	ash 384 bils
BLS	$E(F_q)$	0(17)	256 bits	1 group element	256 bils
	L the field ord	ler q is <i>Éthe curve</i> is	chosen so that the		J USing Point
	vot prine l lor m q=	st of the pairing m 3 ^t at #* (in	aps E(#a) to a subgroup	meler	Compression
		the gener	e Dlog attack in E(Fg);	\$	
		estimated 1	o be loster than the best r Dlog attack in Fis		
			sk. o		
Key Gei	~(1 [^]) ->(,	1k, Sk): a 4	Zq vk: (g	, g*)	
				-	
Sign (sk, m) ->	て: て=	H(m) whe	ere H: {0,13"-	»Gisa
			hash	function (modeled	as a random oracle)
- μ Λ ·			?		
Verily (VK, M, T):	check e(s, c	$s) \doteq e(H(m$), g ^a)	
			H(n)=q [×] lot some	* EZg hachia	encity
<u> </u>					
Lorrec	ctress: e((T,g) = e(H(m))	(g) = e($g^{*}, g) = e$	2(g,g)
		= e(g*	$(g^{a}) = e(H($	$(m), g^{\alpha}$	
		by bilinearity			
/	1 7		C 11	0 (0.1
Secur	tron	~ CDH in	6 in the ra	udom oracle	model

Security proof VK BLS adversary A 3,3°,3°, CDH adversary B "Hash" S: M H(s;) "Sign" w: A 5: 12 gab <----(m, T) Challenge: give consistent responses to A's R.O. and signing queries while somehow embedding the CDH challenge into them Assume = * A queries the R.O. for the message in for which it lorges of } these are without loss of generality the secret key (sk=a) is unknown to B Adversary B - send $VK = (g, g^{\alpha})$ to A - Guess which of A's R.O. queries is for the lorged message (index) - For the it-th R.O. query, respond with gb - For other R.O. queries on usy mi, respond with gbi for bie Za - For a sign query on msg m; , respond with (ga) bi (if A requests a signature on mis, about - If we guessed correctly and get a lorgery (m., s): $e(\tau,g) = e(H(n;*),g^{\alpha}) = e(g^{b},g^{\alpha}) = e(g^{ab},g)$ Since I can make at most poly()) R.O. queries,

 $CDH-ADV[B, G] \ge \frac{1}{Poly(\lambda)} \cdot Sig-Adv[A, S_{BLS, G}]$

Application 3: Identity-based encryption (IBE) [Boneh, Franklin '01] <u>Goal</u>: Instead of needing to know someone's RSh publickey to send them an encrypted nessage what if the publickey could be an <u>arbitrary</u> string (e.g. email address username, phone number, ...) IBE [Shamir '84] : encrypt with respect to identices ; Setup (1) -> (mpk, msk) KeyGen(msk, id) -> Skid Lowerates a secret key for identity id] Everypt (mpk, id, m) -> ct_m [everypts on with respect to identity id] Decrypt (skis, ct_m) -> m/1 [decrypts on if ct_m is an everyption to id] To challenge of IBE is to compress an exponential number of (public/secret) key pairs (one per identity) into a single master (public/private) key pair Alice ct_m = Encrypt(mpk, "Bub", m) st stIBE was a major open problem solved by Boneh-Franklin in 2001 using pairings (and also concurrently by Gooks) IBE can be constructed from CDH or lackring. Very exciting recent result: [Döttling, Garg 17] (but lar from practical)

Bouch-Franklin IBE Scheme: Setup(1) -> (mpk, msk): s < Zq mpk: h=gs msk: s

Eucrypt (mpk, id, m) -> ctm : r = (gr, m. e(hr, H(is)))

How to decrypt? $e(h^{r}, H(id)) = e(g^{rs}, H(id)) = e(g^{r}, H(id)^{s})$ included in secret keyciphertext lor identity id $Key Gen (msk, id) -> Skid : Skid = H(id)^{s}$

Security follows from the Bilinear DDH assumption it H: {0,B* -> 6 is modeled as a random oracle.