
CS 355 Lecture 13 : Pairings - based cryptography



Last week : Elliptic curves y KEEP

→ complexity of
$ group operation

Goal : group 10 with better tradeoff between efficiency
and hardness of blog than #p*

↳ non - generic attacks

Today : Pairing - based cryptography

⇒ exploiting additional structure of elliptic curve groups

Many applications : - blog attacks
- 3 - party key exchange
- short signatures
- Identity - based encryption
✓

a • I

TLogistics : Hw 4 out todayDueMay2ht#



Briefrecapou.EC/ipticcar#

For an elliptic curve E : y
'

= Is * Ax t B

the points on E over Fp form a groep EC Ep)

of order # ECHT ) a p ( Hasse's theorem)

The curve E over IR : EC # p )

•N . . .+ d • a~ .

in

integer solutions

of E taken mod p



• Poinsettia
a point P E EC #p ) is of the form F- ( x. x )
where X

, y E Fp

↳ we need 2 log ( p ) bits to represent P

↳ Poiatcompeiou : Given x
,
the coordinate y is

determined by E up to a sign
( y = I Tx¥tB )

YET.reegesetfasscx.es#Ig..

Ep - E( Fp )

%~"t⇐⇐%complexity of the

group operation 1 multiplication I ate # of multiplications in #p*

28 ios )
best Blog algorithm a 0 ( Tp )

• A change of notation assume cyclic
-

# Eat
)=9 abstract order a

f f group

group G

÷÷÷↳/E¥¥! E
" "

\ generator
of ④

P # Q ga . gb = gatb



also

Pairings can

pay
,
agg

g.
Get

⇐

define

asymmetric
we

-

7 Cyclic groups of order 9

/ Ht .

Definition : A ( symmetric ) pairing e : G x IG → 1Gt
is a mapping with the following properties :

- Bi linearity : Ha
,
b E Eg , g E G : e ( ga ,

gb ) = ecg
, g)

ab

- Nou
- degenerate : if g generates 16

,

then ecg
, g ) generates Gt

- Efficiency : the mapping e can be efficiently computed

"

"
°

GtG

why non - degenerate : the mapping e ( ga , gb ) = I is bilinear

why efficient : the CDH mapping edge ,
gb) = gab

is bilinear but usually assumed to be hard to compute

Q : If a pairing e : Glx 61 → Gt exists
,
what can you say about

the hardness of DDH in 16 ?

→ ( ga
,
gb

,
gab ) arc ( ga , gb , g )



whypa-ir.gs ?

• Originally : attacks on discrete log over Ecfp )

For some elliptic curve groups .EC#e) ,

there exists a bilinear map from Effie)
to 1Gt

,
where GT is a subgroup of Fpa for a small constant x (e.g . a- 2)

[ Menezes
,
Okamoto

,
Vanstone

"

931 Blog over E- (Fp) can be mapped to

Blog over Fpa Toc Tp )

28 ( Faq )

If x is small enough , mapping blog to Fpa gives a faster attack
both asymptotically and in practice .

•

"

Bug ⇒ Feature
"

: [ Joux ,

'

00 ]
,

[ Boneh
,
Franklin '

ol ]

↳ if p Cor x ) is large enough
,
security is preserved

and we can exploit the additional structure of the pairing
to build new schemes for which we know no constructions

from non - pairing groups ( e.g . Fp )



Application 3 - party key - exchange [ Joux
,

'

Oo ]

Recall classic Dillie - Hellman key exchange :

Alice [ a £243 Bob [ b t Za ] Security :

q
-

→

+
←

t
/

is:S
. " Gao :B

(gb) ! gab (ggb= gab
Essentially relies on the group
operation being " I - linear

"

: it is
easy to compute linear relations in

the exponent but difficult to compute
quadratic relations

what about 3 parties ?

Alice [ a EG ]

% ⇒ ::c: : ::*:S :{÷:3:
Bob [ bet 2g] -

Charlie [ e EG ) Charlie computes ecga.gs )
°

go abc
shared key : ecg , g )

Security Bilinear DDH CBDDH ) assumption

( g , ga ,
gb

,
go

,

ecggjab ) arc ( g
, ga ,

gb
,
go ,

ecg,gJ )

Pairings make it easy to compute quadratic relations in the exponent
,

but computing cubic relations should be hard .

Open problems : * N - party key exchange for N > 3
.

would require a multilinear map ( or in distinguishability obfuscation)
↳ Some candidates but questionable security and far from practical

* 3 - party key exchange from other assumptions leg .
lattices)



\

Application : short signatures [ Boneh , Lynn ,
Strachan

'

01 ]

Existing signature candidates : ( 128 - bit level security )

schemeGroupbestattaokbroupsizesignatureleugIR.SN
. Zµ 28 FF )

2048 bits 1 group element 2048 bits

ECDSA Ect ) OC Tp ) 256 bits 2
group elements 512 bits

Schnorr ECFP ) ( Tp ) 256 bits 1 group element ,
# hash 384 bits

BLS Efta ) OCR ) 256 bits I group
element 256 bits

[ the field order q is
t the curve is chosen so that the T

not prime bat - of the pairing maps EC # a) to a subgroup
using point

form 9=3
"

of Ttg¥ ( i.e
. ,x=6 ) .

For these concrete parameters, compression

the generic blog attack in ECHT, ) is
estimated to be faster than the best

non - generic Blog attack in EE

key Genet → ( vk.se ) : a Eeg
,

EE : cag
,
gas

Sign Csk ,
m ) → T : T = Hcm) " where H :{ 0,13*-36 is a

hash function ( modeled as a random oracle)

Verify ( vie
,
m

,
r ) : check eco

, g) I e ( Hcm)
, ga )

Hcm)=g× lor some * E Za by bilinear it
→ →

Correctness : eco
, g) = ectkma

, g ) = ecg "

, g) = ecg
, g)

" a

ecgx , ga ) = e ( Hcm)
, ga )

by bilinearity

Security From CDH in IG in the random oracle model



Securityproot
9,99 gb CDH adversary B w BLS adversary A

- -

¥shHCsi)
→ D

-

forgery

Challenge : give consistent responses to A 's Ro
.

and signing

queries while somehow embedding the CDH challenge into them

Assume ; * A queries the R
.

O
. for the message m for which it forges T }z* A makes no duplicate queries

these are without

loss of generality

AdversaryB_ the secret key Cska ) is unknown to B

- send VK = ( g , ga ) to A
£

- Guess which of A 's 12.0
. queries is for the forged message ( in :* )

- For the i* - th R . O . query ,
respond with gb

- For other 12.0 . queries on msg mi
,
respond with gbi for bid 21g

- For a sign query on msg mi
,

respond with (g)
bi

( if A requests a signature on mi * ,
abort)

- If we guessed correctly and get a forgery Cmi *
,
o ) :

eco
, g) = ectkmi . )

, ga ) = e ( gb
, ga) = ecgab , g )

w

r

since A
can make at most poly ( t ) 12.0

. queries ,

CDH - ADV [ B ,
G ] Z pit , o Sig - Adv [ A , sizes

,
a
]



Elias : Identity - based encryption ( IBE ) [ Boneh
,
Franklin ' od

g
2068 bits . . .

hard to remember

Goal : Instead of needing to know someone 's RSA public key to send them an encrypted message

what if the public key could be an arbitrary string ( e.g . epqgifenaddu.gs??ername ,

IBE [ Shamir ' 84 ] : encrypt with respect to ideates :

←
global public parameters

← master secret key

setup ( I
' ) → ( mpk

,
msk )

key Geucmsk
,
id ) → skis [ generates a secret key for identity id]

Encrypt ( mpk ,
it

,
m ) → Ctm [ encrypts on with respect to identity is ]

Decrypt ( skis
,
Ctm) → m It [ decrypts m it ctm is an encryption to id]

I challenge of IBE is to compress an exponential number of (public lsecret )
key pairs ( one per identity ) into a single master ( public 1 private) key pair

Identity provider

t "my÷÷
ctm

Alice - Bob

Ctm = Encrypt(mpk,
" Bob

"

,
m ) m = Decrypt( Sk " Bob . .

,
Ctm)

IBE was a major open problem solved by Boneh - Franklin
in 2001 using pairings ( and also concurrently by Cooks )

Very exciting recent result : IBE can be constructed from CDH or factoring !

[ Dettling , Garg
'

17] ( but far from practical )



Boueh-frauklinIBESche.me#

Setup ( I
'd ) → Cmpk

,
msk ) : s # za Ift ! 1=5

Encrypt ( mpk
,
id

,
m ) → Ctm : r Eeg

,
atm = ( gr ,

Moe ( hr, Heiss))

How to decrypt ?
echr

,
HC id)) = ecg "

,
H Cid )) = ecgr ,

Habs)
-

-

kedeucmsk.it ) → skis , ski , = Hc , ,gs
' Fest e? s

Security follows from the Bilinear DDH assumption it
H : { o , B

*
→ G is modeled as a random oracle

.


