CS 355 Lecture 13 : Pairings-based Cryptography

Last week: Elliptic curves
Goal: group © with better tradeoll between efficiency and hardress of D Log than \mathbb{F}_{p}^{*}
\rightarrow nor-queic attacks

Today: Pairing-based cryptography
\Rightarrow exploiting additional structure of elliptic curve groups
Many applications: - BLog attacks

- 3-partr key exchange
- short signatures
- Identity - based encryption
- ...

Logistics: HW4 out today?
Due May $24^{\text {th }}$

Brief recap on Elliptic curves

For an elliptic curve $E: y^{2}=x^{3}+A x+B$ the points on E over \mathbb{F}_{p} form a group $E\left(\mathbb{F}_{p}\right)$ of order \#E($\left.\#_{p}\right) \approx P$ (tasse's theorem)

The curve E over $\mathbb{R}: \quad E\left(\#_{\rho}\right)$

- Point representation
a point $P \in E\left(\mathbb{F}_{P}\right)$ is of the form $P=(x, y)$ where $x, y \in \mathbb{F}_{p}$
\rightarrow we reed $2 \log (p)$ bits to represent P
\rightarrow Point compression: Given x, the coordinate y is determined by E up to a sign

$$
\left(y= \pm \sqrt{x^{3}+A x+B}\right)
$$

We can represent P as $(x, \operatorname{sgn}(y))$ using $\log (p)+1$ bits

group
element
group operation

$$
P=(x, y)
$$

$$
P_{\boxplus} Q
$$

$$
\mathbb{C}
$$

$$
9^{a} \cdot 9^{b}=9^{a+b}
$$

Pairings
Definition: A (symmetric) pairing $e: \mathbb{G} \times \mathbb{G} \rightarrow \mathbb{G}_{T}$ is a mapping with the following properties:

- Bilinearity: $\forall a, b \in \mathbb{Z}_{a}, g \in \mathbb{G}: e\left(g^{a}, g^{b}\right)=e(g, g)^{a b}$
- Non-dognerate: if 9 generates \mathbb{C}, then $e(g, g)$ generates \mathbb{C}_{T}
- Efficiency: the mapping e can be efficiently computed

$$
\mathbb{G}
$$

Why vou-degenerate: the mapping $e\left(g^{a}, g^{b}\right)=1$ is bilinear
Why efficient: the CDH mapping $e\left(g^{a}, g^{b}\right)=g^{a b}$ is bilinear but wunaly assured to be hard to comate

Q: If a pairing $e: \mathbb{C} \times \mathscr{C} \rightarrow \mathbb{G}_{T}$ exists, what can you say about the hardness of DDH in 6?

$$
\longrightarrow\left(9^{a}, g^{b}, g^{a b}\right) \approx^{c}\left(9^{a}, g^{b}, 9^{r}\right)
$$

Why pairings?

- Originally: attacks on discrete log over $E\left(\mathbb{F}_{p}\right)$

For some elliptic curve groups $E\left(\mathbb{H}_{p}\right)$, there exists a bilinear map from $E\left(\mathbb{H}_{p}\right)$ to \mathbb{G}_{T}, where \mathbb{G}_{T} is a subgroup of $\mathbb{F}_{p^{\alpha}}$ for a small constant $\propto \quad($ egg. $\alpha=2)$
[Merezes, Okamoto, Vanstove '93] D Log over $E\left(\mathbb{F}_{p}\right)$ can be mapped to
$D \log$ over $\mathbb{F}_{p^{\alpha}}<o\left(r_{p}\right)$
$<_{2}(\sqrt[3]{\log p})$
If α is small enough, mapping Dog to $\mathbb{F}_{\rho^{*}}$ gives a faster attack both asymptotically and in practice.

- "Bug \Rightarrow Feature": [Joux, 'oo], [Boneh, Franklin '01]
\rightarrow if P (or α) is large enough, security is preserved and we can expbit the additional structure of the pairing to build new schemes for which we know no constructions from non-paring grays (e.., \mathbb{F}_{p})

Application 1: 3-party key-exchangl [Jour, 00]

Recall classic Diflie-Hellman key exchange:

$\left(g^{a}\right)^{b}=g^{a b}$

Security:

$$
\begin{aligned}
& \left(g^{a}, g^{b}, g^{a b}\right) \approx\left(g^{a}, g^{b}, g^{c}\right) \\
& b r D D H
\end{aligned}
$$

Essentially relies on the group operation being " 1 -her": it is easy to compute linear relations in the exponent but dillicult to compute quadratic relations

What about 3 parties?

Security: Bilinear DDH (BDDH) assumption

$$
\left(9,9^{a}, 9^{b}, 9^{c}, e(9,9)^{a b c}\right) \approx^{c}\left(9,9^{a}, 9^{b}, 9^{c}, e(9,9)^{r}\right)
$$

Pairings make :t easy to compute quadratic relations in the exponent, but computing cubic relations should be hard.

Open problems: * N-party key exchange for $N>3$. would require a mull:linear map (or indistinguishability obfuscation) \rightarrow Some candidates but questionable security, and for from practical

* 3-party key exchange from other assumptions (eg. latices)

Application 2: Short Signatures [Boneh, Lyun, Shacham 'O1]

Existing signature condidates: (128-bit level securitr)

$$
\operatorname{Ker} \operatorname{Gen}\left(1^{\lambda}\right) \rightarrow\left(v_{k}, s_{k}\right): \quad a<\mathbb{Z}_{a}, \quad \begin{aligned}
& \text { sk: } a \\
& v k:\left(g, g^{a}\right)
\end{aligned}
$$

$$
\text { Sign (sk,m) } \rightarrow \sigma: \quad \sigma=H(m)^{\alpha} \quad \text { where } H:\{0,\}^{*} \rightarrow \mathbb{C} \text { is a }
$$

$\operatorname{Verify}\left(v_{k}, m, \sigma\right):$ check $e(\sigma, g) \stackrel{?}{=} e\left(H(m), g^{a}\right)$
$H(\omega)=s^{x}$ tose $\times \in z_{a}$ by bliverity
Correctress: $e(\sigma, g)=e\left(H(m)^{a}, g\right)=e(g \times a, g)=e(g, g)^{x a}$

$$
=e\left(g^{x}, g^{a}\right)=e\left(H(m), g^{a}\right)
$$

Security: From CDH in \mathbb{G} in the raudom oracle model

Security proof

Challenge: give consistent responses to A^{\prime} ' R.O and signing queries while somehow embedding the CDH challenge into them
Assume: * A queries the R.O. lo r He message in fo which it longs σ \},
*A makes no duplicate queries
Adversary B

- send $v_{k}=\left(9, g^{a}\right)$ to A the secret key (sk=a) is unknown to B
- Guess which of A^{\prime} 's R.O. queries is for the forged message (index)
- For the i*-th R.O. query, respond with g^{b}
- For otter R.O. queries on $\mathrm{m} \mathrm{Sg}_{\mathrm{m}} \mathrm{m}_{i}$, respond with $g^{b_{i}}$ for $b_{i} \mathbb{C}_{\mathbb{Z}} \mathbb{Z}_{q}$
- For a sign query on $m s g m_{i}$, respond with $\left(g^{a}\right)^{b i}$ (if A requests a signature on $m_{i} *$, abort)
- If we guessed correctly and get a forgery ($m_{i *}, \sigma$):

$$
e(\sigma, g)=e\left(H\left(m_{i} *\right), g^{a}\right)=e\left(g^{b}, g^{a}\right)=e(\underbrace{g^{a b}}_{\sigma}, g)
$$

Since A can make at most poly (λ) R.O. queries,

$$
C D H-A D V[B, G] \geqslant \frac{1}{\text { pol rex> }} \cdot \operatorname{Sig}-A d v\left[A, S_{B L S, C}\right]
$$

Application 3: Identity-based encryption (IBE) [Boneh, Franklin' or]
2048 bits... hard to re member
Goal: Instead of needing to know someone's RSA pultikey to send them an excrppled message what if the publickey could be an arbitrary string (e.g. email address, username,
IBE [Shamir '84]: encrypt with respect to identies:
global public parameters
$\operatorname{Setup}\left(1^{\lambda}\right) \rightarrow(m p k, m s k)$
Key Gen (msk, id) \rightarrow skid [generates a secret key for ibutity id]
Encrypt (mpk, id, m) $\rightarrow c t_{m}$
[encrypts m with respect to :identity id]
$\operatorname{Decrypt}\left(s k i d_{i d}, c t_{m}\right) \rightarrow m / \perp \quad$ [decrypts m it $c t_{m}$ is an encryption to id]
\rightarrow challenge of IBE is to compress an exponential umber of (Gublic/seret) Key pairs (one per identity) into a single master (public/private) key pair

Alice

$$
c t_{m}=E_{\text {crypt }}(m p k, " \text { sb" }, m)
$$

$$
m=\operatorname{Decrpp}\left(s k k_{\text {Bb" }}, c t_{m}\right)
$$

IBE was a major open problem solved by Boveh-Franklin in 2001 using pairings (and also concurrently by Cooks)

Very exciting recent result: IBE can be constructed from CDH or factoring! [Dëtling, Gary '17] (but far from practical)

Boneh-Frauklin IBE Scheme:

$$
\begin{aligned}
& \operatorname{Setup}\left(1^{\lambda}\right) \rightarrow(\text { mpk,msk }): s \leftarrow \mathbb{R} \mathbb{Z}_{q} \begin{array}{l}
m p k: ~ \\
m s k: s^{s}
\end{array} \\
& \operatorname{Encrypt}(m p k, i d, m) \rightarrow c t_{m}: r \mathbb{R}_{\mathbb{Z}}, c t_{m}=\left(g r, m \cdot e\left(h^{r}, H(\cdot s)\right)\right)
\end{aligned}
$$

How to decrypt?

$$
\begin{aligned}
& e\left(h^{r}, H(i d)\right)=e\left(g^{r s}, H(i d)\right)=e\left(g^{r}, H(i d)^{s}\right) \\
& \operatorname{Key}^{\operatorname{Gen}}\left(\text { msg, id) } \rightarrow \text { skid: } \quad S k_{i d}=H(i d)^{s}\right.
\end{aligned}
$$

Security follows from the Bilinear DDH assumption it $H:\left\{0,13^{*} \rightarrow \mathbb{C}\right.$ is model as a random orate.

