Lecture 14:
Lattices 6 Short Integer Solutions

CS355 - Spring 2019 Henry Corrigan - Gibbs May 15, 2019

Logistics

* HL 4 out now! Due Friday, May 24 e Spa ¿ Many good problems?
* Katy's OH moving to Gates B21.
* Security Semimu: "Message franking" - Paul C,rmbbs (Cornell)

$$
\begin{aligned}
& \text { Friday, May } 24, \text { Ails pm } \\
& \text { Cites } 463 \mathrm{~A}
\end{aligned}
$$

* Event: My defense...

Protecting Privacy by Splitting Trust" Friday, May $31 \mathrm{I}_{\mathrm{pm}}-2 \mathrm{p}_{\mathrm{m}}$

$$
\text { Packard } 101
$$

Plan

* Recap
* Latice - based crypto
* Short integer solutions
* Collision resistance from SIS

Recap: Pairing - Based Crypto
Groups $\mathbb{G}_{1}, \mathbb{G}_{T}$ of prime order q.
\longrightarrow Dog is hard in \mathbb{G}_{T} and $\mathbb{G}_{T T}$
Pairing $\quad e: \mathbb{G} \times \mathbb{G} \rightarrow \mathbb{C}_{T}$.
\rightarrow efficient, non-trivial, bilinear

$$
e\left(g^{x}, g^{y}\right)=e(g, g)^{x y}
$$

Intuition:
In "normal" dlog-hard groves, can compute degne-one (linear) fans in the exponent"

$$
g^{x}, g^{y} \rightarrow g^{a x+b_{y}+c}
$$

. In groups u/ pairing, can compute deyreetur (quadratic fans) "in the exponent",

$$
g^{x}, g^{y} \longrightarrow e(g, g)^{a x y+b x^{2}+c y^{2}+d x+e y+f}
$$

\Rightarrow Amazing applications. And practical!

- Short si s^{\prime}
- IRE
- Broadcast encyption "SNARk" constructions $\left\{\begin{array}{l}\text { Gennaro } \\ \text { - Certain beautiful "S } \\ \text { Parno } \\ \text { Raykova }\end{array}\right.$ Is there a trilinew map? Compute
degree -three far in exponent? With dog hard in source group

$$
g^{x}, g^{y} \rightarrow e(g, g)^{f(x, y)} \text { for } f(\because) \text { of } d \text { } 3 \text { ?? }
$$

Major open Q in crypts.

Course Overview
We are here!

In the next few lectures, we will be talking about Lattice-based crypto.
Interesting b / c :

1) Gives schemes plausibly secure against quantum attacks \rightarrow Factoring and dog are easy (poly time) on U_{c}. \rightarrow No known eff quartum attacks on many lattice problemm

Pons
2) Gives new functionality (e.g. FHE) Lectures?
\rightarrow Don't know how to build from number theory ($D D H, R S A, \ldots$) \rightarrow Next week
3) Nice theoretical consequences \rightarrow Base crypto on worst-case hendress
N.B. There are people who work or lattice-based cripto for each if these three reasons.
NIST is standardizing new PQ. or, po schemes now... many based on lattice constructions.
N.B. This lecture based on Peitent's lattice survey and lecture notes by David W_{u} and Sam Kim.

We will see

- Short integer soln problem (SIS) \& todny \rightarrow OUFs, CRHF, , sy mintric - ke, primition
- Learning with evrors problem (LWE) \leftarrow Not neck \longrightarrow PKE, IBE, FHE, ...

A warm-up problem: Subset Sum (Modilav)
Input: A set of m integers

$$
\left\langle a_{1}, a_{2}, \ldots, a_{m}\right\rangle \in \mathbb{Z}_{q}^{m}
$$

Output: A non-empty subset that sams to tero (modq)

$$
\begin{array}{ll}
\left\langle x_{1}, x_{2}, \ldots, x_{m}\right\rangle \in\{-1,0,1\} & \begin{array}{l}
\text { wlog to allow } \\
\text { regntiver }
\end{array} \\
\text { s.t. } & \sum_{i=1}^{m} a_{i} x_{i}=0 \in \mathbb{Z}_{q}
\end{array}
$$

\rightarrow For ceratain sett,-zs of paraneters / not those nseful for crypto), subset sum is NP complete!

Example
Input: $\langle 10,3,-2,7,4,15\rangle$
Output: $\langle 1,-1,0,-1,0,0\rangle$

$$
\Longrightarrow 10-3-7=0
$$

Short Integer Solution
A slight generalization of subset sum.
Idea: Take sums of vectors instead of singe ints.
Input: m vectors $\left\langle\left(\begin{array}{c}1 \\ a_{1} \\ 1\end{array}\right)\left(\begin{array}{c}1 \\ a_{2} \\ 1\end{array}\right), \ldots,\left(\begin{array}{c}1 \\ a_{m} \\ 1\end{array}\right)\right\rangle \begin{gathered}\text { each in } \\ \mathbb{Z}_{q}^{n}\end{gathered}$
Output: a vector $\vec{x} \in\{-B, \ldots,-1,0,1, \ldots, B\}^{m} \subseteq \mathbb{Z}^{m}$

$$
\text { st. } \sum_{i=1}^{m} a_{i} x_{i}=\left(\begin{array}{c}
0 \\
0 \\
0 \\
\vdots \\
0
\end{array}\right) \in \mathbb{Z}_{q}^{n} \text { and } \vec{x} \neq \overrightarrow{0}
$$

Parameters:

$$
\left.\begin{array}{l}
n=\text { dimension of vectors } \\
m=\# \text { of vectors } \\
q=\text { modulus } \\
B=\text { bound on soln size }
\end{array}\right\} \operatorname{STS}(n, m, a, \beta)
$$

Our modular subset sum problem is just SIS with $n=1$?

Short Integar Solution
To save space \& tine, we use matrix notation
Input: $\quad A \in \mathbb{Z}_{a}^{n \times m}$
ℓ_{∞}-norm: $\max _{i}\left|x_{i}\right|$
Often defined using other norms (eeg. Euclidean)..
Output: $\quad x \in \mathbb{Z}^{m}$
(1) $\|x\|_{\infty} \leq B$
(2) $\quad A x=\overrightarrow{0} \in \mathbb{Z}_{q}^{n}$.
(3) $\quad x \neq \overrightarrow{0} \in \mathbb{Z}^{n}$.

As n grows, problem gets harder.
Intuition: more constraints to satify.

Typically, we set m, n, q, B all poly (λ).
\rightarrow Relation b/w paraneters is crucial for hardness.

Another way to think about SIS:
Yours given a system of n linear equations $\left.\begin{array}{l}\text { in } m \text { unknowns }\end{array}\right\} m n$. in m unknowns
modulo q.
Your task is to find a solution to this set of equations that is small.

Gaussian elimination will not give you small solńs.

Q: For a random A, how do ne even know that an SIS soln exists?

A: By pigeonhole!
There are 2^{m} choices of $x \in\{0,1\}^{m}$
Then each A_{x} takes on one of q^{n} value i- \mathbb{Z}_{q}^{n}. If

$$
2^{m}>q^{n}
$$

we must have an x, x^{\prime} with $x=x^{\prime}$ st.

$$
\begin{gathered}
\Delta x=A x^{\prime} \in \mathbb{Z}_{q}^{n} \\
\Delta\left(x-x^{\prime}\right)=\vec{O} \in \mathbb{Z}_{q}^{n}
\end{gathered}
$$

Notice: $\left.\begin{array}{l}\text { (1) }\left\|x-x^{\prime}\right\| \leq-1 \\ \text { (2) } A\left(x-x^{\prime}\right)=0 \\ \text { (3) } x-x^{\prime} \neq 0\end{array}\right\} \rightarrow x-x^{\prime}$ is an STS
\Rightarrow If we take $m>n \log q$, then must be a solution. (Generalizes to larger $B>1$.)

Applications of SIS

* On your Hl, yoüll show how to construct a
\rightarrow By implications at stant of course, this gives PRG, PRF, PRP, MAC, Signatures,......

Often called "minicrypt" primitives.
See Impagliazzo's "Five Worlds" Paper.

* We can also construct CRHFs from STS.
\rightarrow So clean, so slick!
\rightarrow If you were stuck on a desert island and needed a CRHF, this is what yid use!

Defin Cullision-Resistant Hash Fun (CRHF) [Drawn from $\begin{aligned} & \text { David Unis notes) }\end{aligned}$
A keyed f_{n} family $H: Y \times X \rightarrow Y$ is a CRHF if
(1) It's compressing: $|X|>|Y|$
(2) If collision nsistent. \forall eff $a d v A d_{v}$:

$$
\operatorname{Pr}\left[\begin{array}{c}
\left.\left.\left.H(k, x)=H\left(k, x^{\prime}\right): \begin{array}{l}
k \& K \\
\left(x \neq x^{\prime}\right.
\end{array}\right)<\operatorname{Axv} / k\right)\right]<\operatorname{neg} \mid, ~
\end{array}\right.
$$

for simplicity, I left the see parom 1 implicit.

CRHF from SIS
Let n, m, q be params st. $\operatorname{SIS}(n, m, q, 1)$ is hard.

$$
\begin{aligned}
& Q_{\alpha}=\mathbb{Z}_{q}^{n \times m}, X=\{0,1\}^{m}, \quad Y=\mathbb{Z}_{q}^{n} \\
& H_{s: 5}: \mathbb{Z}_{q}^{n \times m} \times\{0,1\}^{m} \rightarrow \mathbb{Z}_{q}^{n}
\end{aligned}
$$

$$
H_{S I S}(A, x):=A \cdot x \in \mathbb{Z}_{q}^{n}
$$

Why is this CRHF?
Say that we have adv Adv that breaks CRHf

$$
\operatorname{Pr}\left[\begin{array}{cc}
H(A, x)=H\left(A, x^{\prime}\right) ; & A \leftarrow^{R} \mathbb{Z}_{a}^{n x m} \\
x \neq x^{\prime} & \left(x, x^{\prime}\right) \leftarrow \operatorname{Adv}(A)
\end{array}\right] \geqslant \varepsilon .
$$

Then Adv solves $\operatorname{Sis}(n, m, q, 1)$ D

$$
x-x^{\prime} \text { is: (1) } x, x^{\prime} \in\{0,1\}^{m} \Rightarrow\left\|x-x^{\prime}\right\|_{\infty} \leq 1
$$

(2) $H(A, x)=H\left(A, x^{\prime}\right) \Rightarrow \Delta x=\Delta x^{\prime} \Rightarrow A\left(x-x^{\prime}\right)=\overrightarrow{0}$

$$
\text { ((3) } x \neq x^{\prime} \Rightarrow x-x^{\prime} \neq 0
$$

Break $\operatorname{SIS}(n, m, q, 1)$ w.p. \&

Stepping back: Lattices
Why is SIS called a"latice" problem?
Take a set of n vectors over \mathbb{Z}^{n} ("basis")

$$
B=\left(\vec{b}_{1}, \ldots, \vec{b}_{n}\right)
$$

Look at all liner combinations

$$
\vec{v}=\sum a: \bar{b}_{i} \quad \text { for } \quad a_{1}, \ldots, a_{n} \in \mathbb{Z}
$$

or $\quad V=B \cdot \vec{a} \quad$ for $a \in \mathbb{Z}$
This is the "lattice" $\mathcal{I}(B)$ generated by basis B.
When $n=2$, this looks like a lattice

$$
B=\left\{b_{1}, b_{2}\right\}
$$

Lattices

Given a basis B for a lattice $\mathcal{L}(B)$, there are many questions you can ask?

1) Shortest vector problem (SVP)

Q: What is the shortest non-zero vector in $\mathcal{L}(B)$? Te.g. using l_{2} - norm
\rightarrow Best algs run in super -poly time (in n).
\rightarrow In fact, this is isp had.
2) Closest vector problem (CVP)

Q: Given basis B and "target" $\vec{t} \in \mathbb{Z}^{n}$, whet is vectorvin $S(\theta)$ s.t. $\|\vec{t}-\vec{v}\|$ is minimized?
\rightarrow Best ales run in super-ply time (in n).
384) SVP and CVP $\quad($ for $\gamma>1)$

Soke SUP approximately... off by a factor of γ.
As γ grus, problem gets easier.

Hardness of SUP (Vinod vi lecture notes)

Approx factor γ nicely interpolates b/w NP had and ppt,w crypts in between.

Major open $Q:$ Base crypt on NP hardness?

Relation to SIS.. Alta: (followed by many others) showed that breaking SIS $\underset{\Rightarrow}{\Rightarrow}$ solving certain lattice problem (GapSVP γ) on any lattice.

Q "Basing crypto on wo.st-case hardness"
Solving $\operatorname{STS}(n, m, q, B)$ for

$$
\begin{aligned}
& m=\text { poly }(n) \\
& B>0 \\
& q \geqslant B \cdot \text { poly }(n) \text { large enough }
\end{aligned}
$$

\Rightarrow Solve Gap SUP on arbitrary dim-n lattice w.h.p. For $\gamma=B$. pod $^{\gamma}(n)$.

