Lecture 15 : Signatures and public-key eucryption from Cattices

Recap: SIS -> CRHF

Today: More from lattices

SIS -> +rapdoor OWF -> signatures

LWE: new assumption

4> Reger's encryption scheme

L> Post-quantum key-exchange (HWS)

L> Google has implemented this & L> Ougoing NIST competition to develop standards for post-quantum Cryptography

integer parameters SIS(n, m, q, B)x∈Z^m, ×≠ ở 1) $Ax = 0 \mod q$ Adversary wins it: Z) IXII n S B Hash- lunction from SIS : H_{sn}(A, x) = A x mod q 6 previous Fact 1 : If SIS is hard, How is collision-resistant HWG Problem 56 For appropriate parameters (n, m, q, B), il SIS is hard then we can get a one-way function ? Fact 2 :

✓ "There are outr two hard things in CS: ✓ cache invalidation and varing things" (Phil Karlton) Inhomogenous SIS (ISIS) Adversor Challenger $A \stackrel{\mathbb{R}}{\leftarrow} \mathbb{Z}_{q}^{n \times m}$ ↓ ×∈ Z^m

Adversary wins if: 1) Ax = y mod q 2) ||x|| 00 \$ B

Fact: ISIS(n, m, q, B) is as hard as SIS(u, m, q, B)

Ly "there's nothing special about homogenous systems of equations"

solving Ax = 0 ~ solving Ax - y = 0 (SIS) (ISIS)

Trapdoors

To construct public-ker primitives, we need certain tasks (e.g. decryption) to be easy given some Private information, and hard otherwise. Moreover, some tasks (e.g. encryption,) should be easy for everyore. For symmetric-crypto, the "simplest" primitive is the one-way function. For asymmetric-crypto, the "simplest" primitive is a trapploor one-way function. To asymmetric-crypto, the "simplest" primitive is a trapploor one-way function. Diffice the primitives a trapploor one-way function.

A collection of functions { 1 k: X -> Y 3 KEK is a trapdoor one-way function if:

· There is an efficient Trap Gen (1") algorithm that outputs a "public" ker KEK and a traphoor tok • Given k, $f_{k}(x)$ can be efficiently computed for any $x \in X$ • Given k and $\gamma = f_{k}(x)$ for $x \in X$, it is hard to find $x \in X$ s.t $f_{k}(x') = \gamma$ $\int O \cup F^{"}$ · There is an efficiently computable function of (Idk, y) that outputs XEX St h (x) = y

Example:

k = e $RSA \quad f(x) = x^{e} \mod N \quad f_{k} = d \quad st \quad e \cdot d = 1 \mod \phi(N)$

OWFS are necessary and sulficient for symmetric crypto Remark : i.e, OWFS PRGS PRFS PRPS Trapdeor OWFS are sullicient for public-key crypto but not recessory: Trapdoor OWF > PKE [Gerher, Holkin, Reingold]

Cattice trapdoors this is just the SIS hash function (et $f_A(x) = A x^*$. We will show that we can use f_A as a trapdoor lunction. • Trap Gen $(u, m, q) \rightarrow (A, td_A)$ Produces a matix A E Zq and a trapdoor HA • $4a^{-1}(tdA, r) \rightarrow x$: on truth $x \in \mathbb{Z}_q^m$ s.t Ax = r and $\|x\|_{\infty} \in \mathbb{B}$ Infuition: Given the trapdoor Hoy, solving the ISIS challenge for A is easy There are many ways to construct a trapdoor totA. We will (informally) describe one way: G-frapdoors We start with a matrix GE Zquen such that the function fG(x) = Gx is easy to invert. That is given G and y = G x anyone can lind x'E 20,13" such that G x' = r G is called a gadget matrix. We'll talk about them more on wednesday when discussing Fully Honomorphic Encryption. For now, all we need to know is that G is easy to construct (think about how you would do this !) So fA (lor Act Zq) is hard to invert but has no trapdoor, and fG is always easy to invert (so not are way). We somehow need to mix the

two.

The high-level construction is : we assume ISIS (u, 2, a, B) is hard, for B " "/4 Trap Gen (u, 2m, q): - Sample A & Za"xm - Sample R = {0,13 mm - let GEZque be a public gadaget matrix - output A = [A | AR+G] E Zquxzm toA = R Matrix concalenation $\frac{1}{4}\left(\frac{1}{4}A,\gamma\right)$: Goal: output $\times \in \mathbb{Z}_q^{2m}$ s.t. $A_X = \gamma$ and $\|x\|_{\infty} \in \mathbb{B}$ - Find x* E EO, 13 m such that Gx* = ~ - Set Ko = - R ×* , ×, = ×* (this step uses the trapdoor) - output [xo] • Correctvess: $A\left[\frac{x_0}{x_1}\right] = \overline{A}x_0 + (\overline{A}R+6)x_1$ = $-\overline{A}Rx^* + \overline{A}Rx^* + 6x^* = \gamma$ ||×||_∞ = 1, ||×₀||_∞ = || R×^{*} ||_∞ ≈ <u>M</u> andon binary vector binary vector independent of R · Security: This construction isn't quite secure (this requires a lew) We can show that if $m \ge 2ub_{3}q$: { $(\bar{A},\bar{A}R)$: $R \stackrel{\sim}{=} \frac{1}{2}a_{1}^{mm}$ } $\Re \stackrel{\sim}{\to} \frac{1}{2}\left\{(\bar{A},\gamma): \gamma \stackrel{\sim}{=} 2m\right\}$ A this requires a powerful and useful result known as the Lethor that comma So A is indistinguishable from random. If ISIS is hard, we can prove that \$A is hard to invert \$ Problem: a pre-image x= [-Rx"] leabs information about the trapdoor R to e.g. if A and R are public/secret keys for a signature scheme (see below), then each signature contains such a pre-image x and leaks information about the signing key

Digital Signatures from ISIS

Pretty much identical to signatures constructed from the RSA frapoloor function ("Full Jonain Hash construction")

$$ke_{Y}Ge_{n}(1^{\lambda}): (A, +\lambda) \leftarrow Trap Ge_{n}(n, m, q)$$

$$Set \ pk = A , \ sk = +\lambda A$$

$$H: \epsilon_{n}s^{*} \rightarrow \mathbb{Z}_{q}^{n} \ modded \ os \ a \ R.O.$$

$$Sign(sk, m): \qquad Y = H(m)$$

$$x = \lambda_{A}^{-1}(+\lambda A, Y)$$

$$Output \quad T = X$$

Verily
$$(pk, m, \sigma)$$
: $\gamma = H(m), x = \sigma$
Check that $Ax = \gamma$ and $\|x\|_{\infty} \leq B$

(A, r) and sends pk = A to the adversary B of the signature scheme.

- -> guess the R.O. query that corresponds to the looped message m*, and return $H(m^*) = \gamma$
- -> on a "sign" grear lor m, pick a random x, set H(m) = Ax, return v=x
- > if B andputs a lorged signature J for m*, J is a solution to the ISIS challenge

Learning with Errors

A powerful and easy to use Lattice assumption:

 $LWE(n, m, q, x_B):$ positive integers, B-bounded distribution over Zq: P[llelloo ≤ B] = 1 save as in SIS $\left\{ \begin{pmatrix} A, s^{\mathsf{T}}A+e^{\mathsf{T}} \end{pmatrix} \begin{array}{c} A \notin \mathbb{Z}_{q}^{\mathsf{n}\times\mathsf{m}} \\ s \notin \mathbb{Z}_{q}^{\mathsf{n}} \\ e \notin X_{g}^{\mathsf{m}} \end{array} \right\} \begin{array}{c} \mathcal{N}^{\mathsf{C}} \\ \mathcal{N} \end{array} \left\{ \begin{pmatrix} A, u^{\mathsf{T}} \end{pmatrix} \right. \begin{array}{c} A \notin \mathbb{Z}_{q}^{\mathsf{n}\times\mathsf{m}} \\ u \notin \mathbb{Z}_{q}^{\mathsf{m}} \\ u \notin \mathbb{Z}_{q}^{\mathsf{m}} \end{array} \right\}$

Alternative view (transpose): (AT, ATS+e) * (AT, 4)

This is the "decision" version of LWE. The search version might be more intuitive: given (A, Js +e), recover s Ly The search and decision versions of LWE are (roughly) equally hard ? Lo Solving noisy systems of equations is hard ?

Comparison with ISIS:

ISIS

LWE

solve A's & Y Solve Ax = Y (S.F. 1(AS-Y1100 5B) · m equations · n equations . M unknowns n unknowns • M >> M M 77 M -> a solution exists for any y with high pobability => it y is random, no solution / if y = ATS+C, no other exists with high probability sublion s' exists with high poblity

Reger encryption (Reger 2005)

 $A \stackrel{P}{\leftarrow} Z_{q}^{u \times m}$ $s \stackrel{P}{\leftarrow} Z_{q}^{n}$ $e \stackrel{N}{\leftarrow} X_{B}^{m}$ $b^{T} = s^{T}A + e^{T}$ $e \stackrel{N}{\leftarrow} Z_{q}^{u \times m}$ $e \stackrel{N}{\leftarrow} Z_{q}^{u \times m}$ $Ke_{f} Gen(1^{2}):$ set sk = s, $pk = (A, b^T)$

Everypt (pk, xE {o,1}} : r Le Eo, 13 " Lis rounds down to verrest integer $C_0 = Ar$, $C_1 = br + \lfloor \frac{q}{2} \rfloor \cdot x$ output $Ct = (co, c_i) \in \mathbb{Z}_q^n \times \mathbb{Z}_q$

 $\frac{Decrypt(sk,ct):}{X = c_1 - s^T c_0}$ $\frac{1}{1} |x| < \frac{9}{4} \quad \text{output } x = 4$

Correctvess :

$$\begin{split} \tilde{\mathbf{x}} &= \mathbf{C}_{r} - \mathbf{C}_{0}^{\mathsf{T}} \mathbf{S} \\ &= \mathbf{b}^{\mathsf{T}}_{r} + \mathbf{b}^{\mathsf{T}}_{2} \mathbf{j} \cdot \mathbf{x} - \mathbf{s}^{\mathsf{T}} \mathbf{A} \mathbf{r} \\ &= (\mathbf{s}^{\mathsf{T}} \mathbf{A} + \mathbf{e}^{\mathsf{T}})\mathbf{r} + \mathbf{b}^{\mathsf{T}}_{2} \mathbf{j} \cdot \mathbf{x} - \mathbf{s}^{\mathsf{T}} \mathbf{A} \mathbf{r} \\ &= \mathbf{s}^{\mathsf{T}} \mathbf{A} \mathbf{r} + \mathbf{e}^{\mathsf{T}} \mathbf{r} + \mathbf{b}^{\mathsf{T}}_{2} \mathbf{j} \cdot \mathbf{x} - \mathbf{s}^{\mathsf{T}} \mathbf{A} \mathbf{r} \\ &= \mathbf{e}^{\mathsf{T}} \mathbf{c} + \mathbf{b}^{\mathsf{T}} \mathbf{c} + \mathbf{b}^{\mathsf{T}}_{2} \mathbf{j} \cdot \mathbf{x} - \mathbf{s}^{\mathsf{T}} \mathbf{A} \mathbf{r} \\ &= \mathbf{e}^{\mathsf{T}} \mathbf{c} + \mathbf{b}^{\mathsf{T}}_{2} \mathbf{j} \cdot \mathbf{x} \end{split}$$

we have $e \ll X_{B}^{m}$ and $r \notin 20,15^{m}$ so $|e^{T}r| \le mB < \frac{9}{4}$ So if x = 0, $|\tilde{x}| < \frac{9}{4}$. If $x = (\frac{1}{4}|x| > \lfloor \frac{9}{4} \rfloor - \frac{9}{4} \ge \frac{9}{4}$

Security: (sequence of hybrids over the view of the adversary) $H_{Y}b_{0}: pk = (A, b^{T} = s^{T}A + e^{T}), c_{0} = Ar, c_{1} = b^{T}r + L^{q}J \cdot r$ real experiment indistinguisable by che i Hybi : $PK = (A, T \in \mathbb{Z}_{a}^{m}), C_{0} = Ar, C_{1} = \sqrt{r} + L^{\frac{n}{2}} J \cdot x$ Shelistically indistinguishable $(H_{\gamma}b_{2}: pk = (A, v^{T}e^{F}Z_{0}^{m}), C_{0}e^{F}Z_{0}^{n}, C, e^{F}Z_{0}^{n})$

In Hybz, the cider best is random and independent of the message x.