
CS 355 Lecture 18 16/4)

÷
gistes : HWS due Friday (618)

No office hours next week - good luck on finals !

Please fill out coarse evaluations and
give as feedback !

Come Talk to as if you are interested in research in crypto / want to see what's next
. . .

Corrinne: Many generations of cryptography :

1st generation
: symmetric primitives (OWFS

,
PRGS

,
PRFS

,
PRB]

2nd generation : public -

key encryption [PKE key exchange]

3rd generation :
pairings

[IBE
, short signatures]

4th
generation

: lattices [FHE
, post - quantum key exchange]

5th
generation

: muttilinear maps
[

program obfuscation] -
Today 's lecture

Dryest : Can we hide secrets inside a piece of code e.g. ,
obfuscated

program preserves functionality ,
but hides everything

Why might we want This ?
[-

about implementation other than program's input buyout behavior
]

Application : symmetric encryption
⇒

public -

key encryption

sk ←
KeyGantt ')

PK ← Obf (Encrypt (k
, . 7) obfuscate the encryption function [rely on obfuscation scheme To argue that key is hidden]

Observe: no algebraic assumptions needed (other than existence of This obfuscation scheme !

Applications: optimally - short signatures from obfusated PRF (F : Kim → { 0,13
')

k£12

Sk : K define function fk (m , o) =L if F (k
,

m) = 0 and 0 otherwise

vk : Obf (fk)

Sign (sk
, M) : output o=PRF(Kim) [obfuscation scheme hides the PRF key K

, so cannot forge without guessing
PRF value]

Verify (vk.im , o) : Run Obflfk) on (m
,

o)

f
for language Lc = { XE { 0,13

"
: 7 WE { 0,13

"

4 x. w) =L }

Application:
optimally - short NIZKS from obfuscated PRF :

K
± K define function fk (×

,
w) = F (KK) if C (x. w) =L and 1 otherwise

define function gk (×
,

I) = I if F (KK) = it and 0 otherwise

Setup (17) :Output Obf (fk) and Obf(g , .
) as common reference string 0 = (Ohf (fe)

,
Obf (g .

))

Prooe (0
,

×
,

w) : Output it = Obfflk) (×
,

w)) rely on obfuscated program To hide the PRF key k in fk and
gk

Verify (o
,

×
,

it) : Output Obtlgk) (×
,

it)

p
called virtual black box (VBB) security

Seems to Easy
"

...
Turns out this notion of obfuscation (hide everything except input /output behavior) is impossible T

Florian Tramer
CS355 Lecture 19: Program Obfuscation
�

Florian Tramer
Lecture notes by David Wu from CS355 2018

Weaker notion of obfuscation proposed : indistinguishably obfuscation

11
4

Obfuscation of two
programs That Compute identical functions are indistinguishable

Definition
.

An

indistinguishably
obfuscation (iO) scheme for general circuits (on n . bit inputs) is an efficient algorithm iO with

the following properties :

Functioning
: For all Boolean circuits C : { 0,13

"
→ { 0,1 }

,
and all inputs xe { 0,13

"

:

[

IOCIYCD
(x) = C (x)

Indistinguishably: For all Boolean circuits C
, ,

Cz : 10,13
"

→ { oil } where C
, G) = G (×) for all XE { 0,13

"

and

141=141
,

IOC 17
,

G) I IOC 11,4)

µ
"

crypto - complete
"

Seems very weak
... unclear what it hides about the program ,

if anything
at all !

[But in conjunction with OWFS
,

we can actually get almost all of crypto
-

One of the most powerful cryptographic primitives !]

How do we use IO ? [Sakai - Wates

punctured
paradigm]

keybuildingblock-puncturab.IE
pseudorandom functions

Definition . A PRF F :k×X → Y is a punctured PRF if there exists a puncturing algorithm with The following properties
:

Puncture (k ,×*)→kx*:
puncturing algorithm Takes as input a PRF key K and a point* and produces punctured keyKE '

Correy : fx F X* : F (k ,x) = F(k×*
,

×) somewhat overloading notation : evaluation
using the punctured key could be handled)

"

punctured key can evaluate at all ×¥x*
" (

using a different algorithm

seeing : { Kirk : (k*
,

F (k ,xH) } I { yay : (k*
,

y) }
"

Value at punctured point looks random even given punctured key
"

PancturablePRFS can be constructed from OWFS [via Goldrich . Goldwasser - Micali]

IKE: iO + puncturable PRFS ⇒ all of crypto [with a couple exceptions]

shortsignaturesbyobfuscatingaPRF_landOWI.si

OWF c) /
> puncturable PRF

Setup (17) → (Sk
,

v k) : k ¥ K let Ck (m
,

o) be circuit That outputs 1 if f(F- (Kim)) =f(0)

sk = K

✓ k=i0 (Ck)

Sign (Sk
,

m) : Output F (k
,

m) Assume PRF output has X bits

Verify (vk.no) : Output 40(G .)] (m , o)

Correctness is immediate by correctness of IO
.

We will show
"

selective enforceability
"

where adversary commits To the message it will Forge on at the beginning of the security game
:

adversary challenger
*

=>
(sk , uk) ← Setup (17

vk
<

maese F

-0*-1 if Verify (vk
,

m*
,

0*1=1 and 0 otherwise

Securityofsi=m :

Hybo : real signature game between adversary and challenger

verification program :

|ChYm,o):output#lFCkmF=fCoT|
otherwise

, output 0 9

-
these Two circuits compute identicalfunctionalities

hard . w , \[BY correctness of puncturable prf]
Hyb ,

: verification program replaced by the following :
. redraw ↳

hybrids indistinguishable by :O=((M ,o) : if

m=m*
: output I iff(FCK ,m*l) =

Hoy
and 0 otherwiseVerification Program :

t.im#m*..oa+pa+1.fc=mDffooIse)

] by puncturing security of E
€

PRF key punctured at m* value of F(K ,m*) looks

random given km*
Hybs : challenger samples

ran.domytyando.tw#wifiati0nPro8romastdlws ↳
hybrids indistinguishable

Ch"m*(m
,

o) : if m=m* : output 1 if f (g) =f(o) and 0 otherwise
Verification Program :|if m±m* ; output 1 if f(f(km*

,
MD = f (o) and 0 otherwise BY Pa "*wiY

-
security

Probability That adversary forges in Hybz is negligible since such an adversary can invert the OWF (namely ,
a forgery on m*

satisfies f(0) = fly) where
y

is sampled uniformly at random from Y ⇒
signature forger breaks one . wayness of f)

Advantage of A in Hybz is negligible
⇒ Hybo , Hybi , Hybz are computationally indistinguishable experiments ⇒ Advantage of A

in Hybo is negligible

Sunday : Signature scheme where signatures is just PRF output (yields 7 - bit signatures with 7 - bit security provided

That underlying primitives provide exponential security

OpenPnbK- : 7 - bit signatures without iO ?

secoet-keyencryption-public.tn/encryptionfrom= :

key
Gen (1

') : sample PRF key K
,

let G :{ 0,137 → { 0,13
"

be a PRG

define function Ck (r
,

m) : ((Gk)
,

F (k
,

G (r)) Ot m)

output sk= K and pk = IO (Ck)

Encrypt (pk ,
m) : rd { 0,13

'

output (IO (Ck)] (r
,

m)

Decrypt (sk
,

et) : output F (k
,

to) to ct
,

Correctness is immediate
.

Security recall PKE security game
:

be { 0,13

adversary Challenge 1

ok (pk.sk) ←
Key Gal 1 'Tc-

Mo
,

M
,÷* Encrypt (pk , mb)

c-

¥
- { on }

Secure if / Pr[b
' --11 b=o] - Pr[bit lb '

- I]) =
 negl (a) .PRIyhybvidam.tk/bo

: semantic

security
game between challenger and adversary where adversary encrypts Mo

specifically , challenger does the following :

1. Sample k
£ K and r* It { 0,137

£ construct

pkag.fm#atio..nootupIhipuTTm_
d) Pro security

3
.

When challenger submits messages (Mo
,

mi) : return Ct ← (G(r*)
,

Flk
, G(r*D

otmo
)

Hybi : replace G (r 't) with uniformly random string yet { 0132
"

[in this case ,
Ct = (

y ,
Flk , g)omo)

g)
iO security : since y±{ 0nF

,

Hybz : replace public key with obfuscation of following program
: Pr[Ixe{ on }

'
: Gcx)=y] e }¥=z÷⇒T.oOKtGCD.tk#0mH⇒ programs are identical with prob .

| .

I

note : ciphertext is still at = (y ,
FIK , y) and 2

"←
key punctured at

Y]
puncturing security of F (the keyHybs : replace cipher text with ct= (y ,

Z) where z
←R { 0,13k

"

kg is punctured at The pointy)
Hyby

-

Hybb : unroll the above analysis (with
message

m
,
)

High
- level idea in punctured programming

: There is some secret information That the adversary needs in order to break
security

(
e.g. ,

The value of

the PRF at a particular point) and using puncturing t iO
, we can remove that Information from the view

of the adversary ⇒ yields secure cryptographic instantiations

With punctured programming ,
we can realize applications of VBB obfuscation from iO (which plausibly exists)

In fact
,

we can do more : can leverage iO + OWFS to obtain functional encryption (FE) :

-

Ciphwtexts are associated with messages m

} sgtgn ⇒ f (m) [and nothing move about m]
-

Keys are associated with functions f

Generalizes notions like
public

-

key encryption
(only supports identity function in decryption key)

identity - based encryption (encrypt to Cid , m) and functions associated with id
'

-

outputs m if id =
 id ')

attribute - based encryption , predicate encryption , etc .

-

general umbrella for encryption

If IO is
"

crypto
. complete! what next ?

Challenge : I
. Realizing IO from standard assumptions (e.g. ,

DDH
, pairings,

LWE)
↳ Current Instantiations rely on muttilinear maps ,

which have been subject to numerous attacks in the last few years

(lots of skepticism over Their security) -

while there exist iO candidates over concrete multi linear
map

instantiations that are not known to be broken
,

status is very Tenuous

"

Cryptographers seldom sleep well
.

" - Joe Kilian (attributed To Silvio Micali)

2. Concrete efficiency of IO : all constructions Today are extremely Theoretical (and nowhere close to practical)

↳ To obfuscate a PRF like AES
, constructions need to publish 72100 encodings or support 72100 levels of

multi
linearity [some newer constructions can make do with constant . degree multilineariyt (in fact a trilinear map

suffices
, but These require non - black . box use of the multi linear map ,

which is also extremely costly]
↳ Solution is not better engineering

- need fundamentally better constructions

In spite of The existing limitations
, IO informs as about the landscape of cryptography and highlights what is feasible

. Techniques from

obfuscation and inspired by obfuscation has inspired many new Techniques and constructions in The last few years (
e.g. ,

round -

optional

MPC)

Excitations.
Now That we have IO

,
what is the next generation of cryptography

?

Can we realize iO from LWE ?

(existing constructions of multi linear maps all rely on lattices
,

but problems not reducible to LWE)

