
CS 355: Topics in Cryptography Spring 2019

Lecture 2: Basic Cryptographic Primitives, Hybrid Argument

Dima Kogan

Introduction

Ideally, we would like to prove the security of our cryptographic constructions unconditionally. However,
in most cases, such a proof would imply that P 6=NP. Why? An unconditional security proof for some
functionality would establish the following: the functionality can be efficiently computed given the secret
key, whereas without access to the secret key, there is no efficient algorithm for the functionality. This
roughly corresponds to a problem which is in NP but not in P (and not even in BPP).

Since we do not expect to resolve the P vs. NP problem anytime soon, we cannot hope for uncondi-
tional proofs of security. What would be the next best thing then? Perhaps, proving the security under
the assumption that P 6=NP. For instance, we would hope to show that, there is no efficient adversary for
our encryption scheme, as long as there are no polynomial-time algorithms for 3-SAT. We do not know
how to this (it is a huge open problem). The problem is that NP only capture hardness in the worst case,
whereas for crypto, we need our problems to be hard on the average case (e.g., decryption should be hard
for most choices of the secret key, rather than only in the worst case).

1 One-way functions

The basic form of computational hardness we require is a one-way function.

Definition 1.1 (One-way function). A function ensemble
{

fλ : {0,1}n(λ) → {0,1}`(λ)
}
λ∈N is one-way if

1. there exists an efficient algorithm that given λ and x computes fλ(x), and

2. for every efficient algorithm A, and sufficiently large λ ∈N, it holds that

Pr
[

f (A(f (x)) = f (x) : x ←R {0,1}n]< negl(λ) .

A few remarks are in order:

1. Why do we require f (A(f (x))) = f (x) instead of A(f (x)) = x? As f is not necessary one-to-one, the
point f (x) might have more than one preimage, and we require the adversary to find any one of
them.

2. Why do we speak of function ensembles, rather than of simply a single function f : {0,1}n → {0,1}`?
Our definition of negligible probability is asymptotic, so a one-way function has to be defined for
infinitely many values of λ. In fact, strictly speaking, a function with a finite image (e.g., SHA-256)
cannot be one-way in this sense, since an algorithm can invert it with probability 1 by having in
its code a preimage for every point in the image of the function. The code would be huge (and
impractical), yet finite. However, in many cases, we will ignore this important, yet technical, aspect
in our definitions, and we will write f : {0,1}n → {0,1}`, where in fact we refer to a function ensemble
parameterized by a security parameter λ, and n = n(λ) and `= `(λ) are some polynomials in λ.

As we said, we cannot prove that one-way functions exist, yet we have several plausible candidates. For
example, variations of factoring and modular exponentiation (with inverse being the discrete logarithm
problem) are all plausible one-way functions. It turns out that one-way functions are surprisingly powerful,
and are sufficient to construct most symmetric cryptographic primitives. The following is known to hold:

OW F ⇒ PRG ⇒ PRF ⇒ block ciphers, MACs.

Where each arrow means that we can construct one primitive from the other one. The other direction is
also true (and is much easier to show), so each of these primitives is in-fact sufficient and necessary for
symmetric-key cryptography.

In CS255 you have seen how to construct block ciphers and MACs from PRFs, and in this class we’ll
focus on the other two steps.

2 Pseudorandom Generators

Definition 2.1. Pseudorandom generator An efficient algorithm G is a pseudorandom generator if it:

1. stretches its input: for s ∈ {0,1}n , it holds that G(s) ∈ {0,1}` for `> n, and

2. pseudorandom: for every efficient algorithm A, it holds that∣∣∣Pr
[
A(G(s)) = 1: s ←R {0,1}n]−Pr

[
A(y) = 1: y ←R {0,1}`

]∣∣∣< negl(n) .

We can also rephrase the second requirement in terms of computational indistinguishability of
probabilty distributions.

Definition 2.2 (Computational indistinguishability). Let D1 = {
D1,λ

}
λ∈N and D2 = {

D2,λ
}
λ∈N be two

collections (ensembles) of probability distributions. We say that D1 and D2 are computationally indistin-
guishable (denoted D1 ≈c D2), if for all efficient aglorithms A,∣∣∣Pr

[
A(1λ, x) = 1: x ←R D1,λ

]
−Pr

[
A(1λ, x) = 1: x ←R D2,λ

]∣∣∣< negl(λ) .

We can then rephrase the second requirement in Definition 2.1 as requiring that the ensembles{
G(s) : s ←R {0,1}n

}
λ∈N and

{
y ←R {0,1}`

}
λ∈N are computationally indistinguishable.

Constructing a PRG from a OWF. We consider the simpler case of constructing a PRG from a one-way
permutation. Let f be a one-way permutation, i.e., it is one-way (as defined in Definition 1.1), and
additionally, for every n ∈N, f : {0,1}n → {0,1}n is a permutation on the elements of {0,1}n . Then

G(r, x) = r‖ f (x)‖〈x,r 〉

where r, x ∈ {0,1}n , is a pseudorandom generator {0,1}2n → {0,1}2n+1. Here || denotes string concatenation,
and 〈·, ·〉 denotes inner-product modulo 2. Since f is a permutation, r‖ f (x) is a truly random string of
length 2n. The heart of the proof is to show that 〈x,r 〉 is unpredictable. This is called the Goldreich-Levin
theorem. You will see a (relatively simple) variant of it in Homework 1.

2.1 Increasing the stretch

We now show how to construct PRGs or polynomially large stretch from the above PRG that only stretches
its input by a single bit. We use this proof as an opportunity to present a very important proof technique
in cryptography, called a “Hybrid Argument”.

The Blum-Micali PRG. Let G be a PRG with stretch 1, i.e., |G(s)| = |s|+1, where | · | denotes the length of
a string. Let `(n) be any polynomial. We construct a PRG G ′ as follows:

on input s ∈ {0,1}n :

• s0 ← s

• si bi ←G(si−1) for i = 1,2, . . . ,`

• output b1,b2, . . . ,b`

Theorem 2.3. G ′ is a pseudorandom generator.

Proof. Clearly, the PRG G ′ stretches its input from n to `(n). Moreover, since G is efficient, than G ′ is also
efficient: its running time is t ′(n) = t (n) ·`(n)+O(n) where t (n) is the running time of G . Since t (n) and
`(n) are both polynomials in n, so is t ′(n).

It remains to show that G ′ is indeed pseudorandom. We prove by contradiction: let A be an efficient
algorithm that breaks G ′, namely assume∣∣∣Pr

[
A(G ′(s)) = 1: s ←R {0,1}n]−Pr

[
A(y) = 1: y ←R {0,1}`

]∣∣∣= ε(n)

for some non-negligible function ε(n).
We define the hybrid distributions {Di }`i=0, each over the set {0,1}`, where Di is obtained as follows:

• for j = 1 to i , let bi ←R {0,1}1

• let si ←R {0,1}n

• for j = i +1,2, . . . ,` set s j b j ←G(s j−1)

• output b1,b2, . . . ,b`

Note that D0 is exactly the output distribution of G ′:
{
G ′(s) : s ←R {0,1}n

}
, and D` is exactly the truly

random distribution
{

y ←R {0,1}`
}
.

Denote pi = Pr
[
A(y) = 1: y ←R Di

]
. By our assumption on A it thus holds |p0 − p`| = ε where ε is

non-negligible. The intuition now is that there must exist an index i ∈ {1,2, . . . ,`} and a neighboring pair
of hybrids Di−1,Di such that |pi −pi−1| is also non-negligible. We can then use the adversary A and such
an i to create a distinguisher B for G . In fact, a random i will be enough.

Algorithm B works as follows:

on input z ∈ {0,1}n+1,

1. parse z as (s,b) where s ∈ {0,1}n and b ∈ {0,1}

2. set I ←R {1,2, . . . ,`}

3. for j = 1 to I −1, let b j ←R {0,1}

4. set bI ← b and sI ← s

5. for j = I +1,2, . . . ,` set s j b j ←G(s j−1)

6. Set y = b1,b2, . . . ,b`, run and output A(y)

We now observe the following. When B is given as input z ←R {0,1}n+1, and chooses a value I = i in step
2 then it runs A on an input y sampled from the distribution Di . Conversely, when B is given an input

1We slightly abuse notation, and here and elsewhere the loop ”for j = 1 to i " does not execute at all when i = 0.

G(s) for s ←R {0,1}n , then it runs A on in input y sampled from the distribution Di−1. Using our notation{
y | I = i : z ←R {0,1}n+1}≈Di{
y | I = i : z =G(s) , s ←R {0,1}n}≈Di−1

It therefore holds:

∣∣Pr
[
B(z) = 1: z ←R {0,1}n+1]−Pr

[
B(G(s)) = 1 : s ←R {0,1}n]∣∣

=
∣∣∣∣∣∑̀
i=1

Pr
[
B(z) = 1 | I = i : z ←R {0,1}n+1] ·Pr[I = i]−Pr

[
B(G(s)) = 1 | I = i : s ←R {0,1}n] ·Pr[I = i]

∣∣∣∣∣
=

∣∣∣∣∣∑̀
i=1

Pr
[
A(y) = 1: y ←R Di

] · 1
` −Pr

[
A(y) = 1: y ←R Di−1

] · 1
`

∣∣∣∣∣
= 1

` ·
∣∣∣∣∣∑̀
i=1

pi −pi−1

∣∣∣∣∣= 1
` · |p`−p0| = ε

`
.

The first equality above holds by the law of total probability, and the second to last inequality holds
since the sum is telescoping.

The advantage ε(n) is non-negligible, and the stretch `(n) is a polynomial. Therefore ε(n)/`(n) is non-
negligible, so we obtain a algorithm B with a non-negligible distingushing probability for PRG G ,which is
a contradiction to the premise of the theorem.

Recap: Hybrid Argument. Abstractly, the key steps in our hybrid argument were:

1. Construct a sequence of polynomially many distributions between the two target distributions.

2. Argue that each pair of neighboring distributions are indistinguishable.

3. Conclude that the target distributions are indistinguishable.

The last two steps are often done using a proof by contradiction.

3 Pseudorandom functions

Let F : K×X →Y be a function. Consider the following attack game:

1. The challenger chooses b ←R {0,1}. If b = 0, the challenger chooses k ←R K and sets f ← F (k, ·). If
b = 1, the challenger chooses f at random f ←R Funs[X ,Y].

2. The adversary can repeatedly query f on any point x, and the challenger responds with f (x).

3. The adversary outputs b′ ∈ {0,1}.

We define the adversary’s advantage as:

PRFAdv[A,F] = ∣∣Pr[b′ = b]− 1
2

∣∣ .

Definition 3.1. A PRF is an efficient deterministic algorithm F that takes two inputs: a key k ∈K and
an input x ∈ X , and outputs y = F (k, x) ∈ Y , such that for every efficient adversary A the advantage
PRFAdv[A,F] is negligible.

Remark. As before, strictly speaking, the sets K, X , and Y have to be defined as ensembles of sets
parameterized by the security parameter λ.

3.1 The GGM construction

Suppose we have a length-doubling PRG G : {0,1}n → {0,1}2n . We can construct a PRF F : {0,1}n × {0,1}n →
{0,1}n as follows. For the sake of simplicity, we assume that n is a power of 2. Since G is length doubling,
for a seed s ∈ {0,1}n , we can write G(s) = (s0, s1) = (G0(s),G1(s)), where G0,G1 ∈ {0,1}n → {0,1}n . For every
k, x ∈ {0,1}n ,w define F (x) :=Gxn (Gxn−1 (. . . (Gx1 (k)) . . .)).

The proof of security uses a hybrid argument, and can be found in the Boneh-Shoup book, Chapter
4.6.

	One-way functions
	Pseudorandom Generators
	Increasing the stretch

	Pseudorandom functions
	The GGM construction

