## Lecture 4: Knowledge

Henry Corrigan - Gibbs CS355 - Spring 2019

April 10, 2019 Plan - Reap: Interactive proofs - Zero Krowledge \* What it is \* Why it's useful \* How we define it - Example: ZK Proof for HAMCYCLE Keminders > HL 1 due Friday at Spm vin Gradescope Late day policy Today - We will be discussing the most beautiful idea in all of CS. Maybe of all time?

Controversial but still true: - Zero Knowledge - How to prove to you
that I know Something (e.g. of is SAT)
without leaking anything else to you (SAT assignment)
- Amazinely clever, also useful in many cripto
protocols. protocols. -> Lesson: Importance of definitions.

Original Zk perper is important b/c of defin of Zk,

Not because of the specific constructions.

Defin is > 1/2 the bottle

Specific constructions.

And I of Constructions. Goldwasser, Micali, Rackoff (STOC, 85)

| Recap: Interactive proofs                                                 |
|---------------------------------------------------------------------------|
| On Monday, Florian introduced interactive proofs                          |
| Goal of a proof: Convince someone of something "the verifier" "statement" |
| In complexity theory, we consider statements of the formi                 |
| $x \in \mathcal{I}''$                                                     |
| instance language                                                         |
| Examples: " N is the product of exactly two prines                        |
| NE {pq   prines p,q}                                                      |
| "The Pythagorean Thm is true."                                            |
| "The Pythagoreun Thm is true."  PYTHME { true statements in system }      |
| " Ø is on unsatissiable SAT formla"                                       |
| $\phi \in \S$ set of unseristiable SAT instances"                         |
|                                                                           |
|                                                                           |
|                                                                           |





|          | Q <u>:</u>   | Why                    | j is                     | intere           | action              | useful:                      | )        |               |
|----------|--------------|------------------------|--------------------------|------------------|---------------------|------------------------------|----------|---------------|
| <i>A</i> | 1:           | (Or<br>IP              | mond<br>Captur<br>PSPACE | ay) es a 5prov   | large,<br>ne to you | r class<br>in that a<br>sle! | of pro   | blems.<br>Not |
| Δ        | , <b>2</b> : | (Too<br>Inte<br>surpri | day)<br>rautive<br>sing  | proofs           | , ean               | have                         | a H      | nî ro         |
|          |              |                        | Want                     |                  |                     | earns no-<br>interaction     |          |               |
|          |              |                        |                          |                  | 2                   | Huh? Who                     | t does   | this          |
|          | Applic       | ention:                | Can protocol             | correl<br>Secret | yon the             | at I exthat reve             | ecuted s | Sonje         |
|          |              |                        |                          |                  |                     | security is<br>leaks'        |          |               |
|          |              |                        |                          |                  |                     |                              |          |               |



| The s<br>clean | surprising t                               | thing is               | that<br>this:       | there i        | 5 c, V                 | ery                       |
|----------------|--------------------------------------------|------------------------|---------------------|----------------|------------------------|---------------------------|
| 3.             | Zero Kno                                   | uledge: V              | esticient<br>t. V x | . √*, ∃<br>∈ L | efficient              | Sin                       |
|                |                                            | {Vieu                  | * [ P(x)<→ V        | 1              |                        |                           |
|                |                                            |                        |                     | 5              | perfect<br>statistical | S\$ flavors = ≈ s ~ 1 ≈ c |
|                | ntuition:                                  |                        |                     |                |                        |                           |
|                | ntuition: - Whatever 1 can learn           | / can lear<br>s.ttg at | by into             | exulting the   | N/ P :                 | t                         |
|                | Holds even is malicions                    | 7                      |                     | alions over No | w York."               |                           |
| _              | Key to new                                 | rember: In             | put to              | /              | 3                      | capthes                   |
|                |                                            |                        |                     |                |                        | when                      |
|                | nere is an a<br>on want to<br>-> "Auxilian | ,-inpt ZK'<br>See      | Goldrei al          | x 84.3         | . 3                    |                           |





| 24          | Protocol (Blum)                                                      |                                |                      |                                     |
|-------------|----------------------------------------------------------------------|--------------------------------|----------------------|-------------------------------------|
|             | Blum, well imagine<br>ne implement w/ c                              | that P can<br>ryptographic co. | send V<br>mm,tments. | l'ilocked boxes,                    |
|             | (G)                                                                  |                                | Ver:5:               | er (G)                              |
| * Put each  | of the n vertices v, boxes B, , , Bn in ran                          | dom order.                     |                      |                                     |
| * Into box  | Bij, put § 1 if vertice are as                                       | s in B, and B;                 |                      |                                     |
| Bis = relab | eling of vertices<br>matrix under relabeling                         |                                |                      |                                     |
|             | Send the n-                                                          | + (n) boxes                    |                      |                                     |
|             |                                                                      | -                              | Flip a               | coin be {0,1}                       |
|             | If b=0: "Show                                                        |                                |                      |                                     |
|             | IS b=1: "Show                                                        | ne the cycle"                  |                      |                                     |
|             | <                                                                    |                                |                      |                                     |
| If b=0:     | Unlock all boxes.                                                    |                                | Chec                 | le :                                |
| IS b= 1:    | Unlock all boxes.  Unlock only boxes  corresponding to Ham Cyc  Keys | ·او نہ کہ .                    | b=0                  | le:<br>Got a perm<br>of adj, motrix |
|             | Keys                                                                 |                                |                      | Cot a capele                        |
|             |                                                                      |                                |                      | C                                   |

Sone Comments

Box contrins ms 9 Some particular type of hash fin. Inagine: = H(m,r)(m,v) Properties 1. Complete. V 2. Sound. If G ∉ Ham Cycle, then no matter what Pt puits in bosses, V will reject w.p = 1/2. 3. Zero knowledge. L'e construct eff Sim. Sim (G & HAM Cycle) - Cruss b = (0,1).

- If b=0, put random perm of Adj not in Boxes.

- Bun b = V\*(C, Boxes)

- If b = b Abort.

- Else, open boxes per V\*; regrest

- Output (C, Boxes, b, Keys to boxes)

ac transcript. as transcript. N.B. When we replace it al box w/ a real commitment, we get a protocol that is only computational ZK.

Life lessons to remember

\*\* If you can simulate as interaction,

you havan't learned anything useful from it.

\*\* Ideally doesn't apply to this lecture.

\*\* Input to simulator = what leaks.

\*\* Anything that has a traditional (NP) proof also has a zero knowledge proof system.