Lecture 4: Knowledge

Henry Corrigan-Gibbs
CS355 - Spring 2019
Plan

- Recap: Interactive proofs
- Zero knowledge
 - What it is
 - Why it's useful
 - How we define it
- Example: ZK Proof for HAMCYCLE

Reminders

⇒ HW 1 due Friday at 5pm via Gradescope
⇒ Come to OH today?
⇒ Late day policy

Today

- We will be discussing the most beautiful idea in all of CS. Maybe of all time?
 - Controversial but still true:
- Zero knowledge - How to prove to you that I know something (e.g., d is SAT) without leaking anything else to you (SAT assignment)
- Amazingly clever, also useful in many crypto protocols.
⇒ Lesson: Importance of definitions.
 Original ZK paper is important b/c of definition of ZK, not because of the specific constructions.
 ⇒ Definition is >½ the battle
⇒ Paper rejected 3 (I think) times before published
⇒ Lesson?
 Goldwasser, Micali, Rackoff (STOC ’85)
Recap: Interactive proofs

On Monday, Florian introduced interactive proofs.

Goal of a proof: Convince someone of something.

In complexity theory, we consider statements of the form:

" \(x \in L \)"

instance \quad language

Examples: "N is the product of exactly two primes.

\(N \in \{pq \mid \text{primes} \, p, q \} \)

"The Pythagorean Theorem is true."

\(\text{PYTHM} \in \{\text{true statements in some formal system}\} \)

" \(\phi \) is a unsatisfiable SAT formula."

\(\phi \in \{\text{set of unsatisfiable SAT instances}\} \)
Recap

Conventional Proof

Say that we want to prove that $x \in L$.

Can do so w/ a conventional proof $\iff L$ is an NP language

e.g. to prove that ϕ is SAT, P sends satisfying assignment to V.

Blum NP = “nifty proof”
Recap What if we allow P & V to interact?

What if V can use randomness?

Properties we want

1. Completeness \(\forall x \in L \) \(\Pr[<P,V>(x) = \text{accept}] \geq \frac{2}{3} \)

2. Soundness \(\forall x \notin L \) \(\forall P_x \) \(\Pr[<P_x,V>(x) = \text{accept}] \leq \frac{1}{3} \)

Can increase to 1.

Can reduce to negligible w/ repetition.
Q: Why is interaction useful?

A1: (Or Monday)

IP captures a larger class of problems.

⇒ PSPACE ... prove to you that a graph is not 3-COLORABLE!

A2: (Today)

Interactive proofs can have a third surprising property.

Properties we want

3. Zero knowledge V “learns nothing” from her interaction with P, except that x ∈ L.

Huh? What does this even mean?

Application: Can prove to you that I executed some protocol correctly without revealing any of my secrets.

Defn of ZK used to define security in many protocols...
Q: What does it mean to "learn nothing" from an interaction?

Ex. Me in 7th grade

Ex. Military spokesperson.

INTUITION: If V can easily write down a transcript of its interaction with P, then V hasn't learned anything useful from P.

If you can simulate the core transcript, no need to have it at all!

Applications in real life?
The surprising thing is that there is a very clean way to formalize this intuition.

3. Zero knowledge: \(\forall \text{ efficient } V, \exists \text{ efficient } \text{Sim} \) s.t. \(\forall x \in \Sigma \),

\[
\{ \text{View}_{V^*}[P(x) \leftrightarrow V^*(x)] \} \equiv \{ \text{Sim}(x) \}
\]

There are different flavors of ZK:
- perfect
- statistical
- computational

Intuition:
- Whatever \(V \) can learn by interacting with \(P \), it can learn sitting at home by running \(\text{Sim} \).
- Holds even if \(V^* \) is malicious.

- Key to remember: Input to \(\text{Sim} \) essentially captures what the \((P, V)\) interaction leaks.

There is an annoying technical issue that comes up when you want to run a ZK protocol many times.
- "Auxiliary-input ZK"

See Goldreich § 4.3.3.
ZK protocol for Hamiltonian Cycle [Blum '87 (?)]

- Hamiltonian Cycle is an NP-Complete problem
- Anything provable (in NP) is provable in ZK
- Reduce to Hamiltonian instance, use this protocol.

In theory, can prove to you that I know an Oday in iOS without revealing it to you. And so on...

Reminder: Defn of Ham Cycle

\[G = (V, E) \text{ undirected graph} \]

See Knuth (linked from course website) for fun history of this problem.

HamCycle = \{ \(G \mid G \text{ has a Hamiltonian cycle} \) \}

Adjacency Matrix

\[
\begin{array}{cccccc}
1 & 2 & 3 & 4 & 5 & 6 \\
1 & 0 & 1 & 1 & 0 & 0 \\
2 & 1 & 0 & 0 & 1 & 1 \\
3 & 1 & 0 & 0 & 1 & 0 \\
4 & 1 & 1 & 1 & 0 & 0 \\
5 & 0 & 1 & 0 & 0 & 1 \\
6 & 0 & 0 & 0 & 1 & 0 \\
\end{array}
\]

\[A_{ij} = \begin{cases}
1 & \text{if } (i, j) \in E(G) \\
0 & \text{otherwise}
\end{cases} \]
Trivial Protocol

\[P(G) \xrightarrow{\text{edges on cycle}} V(G) \]

Check that edges make Hamiltonian cycle

\[\text{acc/rej} \]

Not Zero Knowledge

Under reasonable assumptions...
** zk Protocol (Blum) **

Following Blum, we'll imagine that P can send V "locked boxes," which we implement via cryptographic commitments.

Prover (G)

* Put each of the n vertices \(v_1, \ldots, v_n\) into n boxes \(B_1, \ldots, B_n\) in random order.
* Into box \(B_{ij}\), put 1 if vertices in \(B_i\) and \(B_j\) are adjacent in \(G\).

\(B_i\)'s = relabeling of vertices
\(B_{ij}\)'s = adj. matrix under relabeling

Verifier (G)

Send the \(n + \binom{n}{2}\) boxes

Flip a coin \(b \in \{0, 1\}\)

If \(b = 0\): "Show me G!"

If \(b = 1\): "Show me the cycle."

Check:

\(b = 0\) Got a perm of adj. matrix
\(b = 1\) Got a cycle

Accept if so.

If \(b = 0\): Unlock all boxes.

If \(b = 1\): Unlock only boxes corresponding to Ham Cycle in \(G\).
Some Comments

Imagine:
\[\text{Box contains } m \rightarrow H(m, r) \]

Some particular type of hash fn.

Box contains msg

Properties

1. Complete. ✓
2. Sound.
 - If \(G \in \text{Ham Cycle} \), then no matter what \(P^* \) puts in boxes, \(V \) will reject w.p. \(\frac{1}{2} \).
3. Zero knowledge. We construct eff Sim.

Sim(\(G \in \text{Ham Cycle} \))

- Guess \(b \leftarrow \{0, 1\} \).
- If \(b = 0 \), put random perm of Adj mat in boxes.
- If \(b = 1 \), put random perm of cycle in boxes.
- Run \(b \leftarrow V^*(G, \text{Boxes}) \).
- If \(b \neq b^* \), Abort.
- Else, open boxes per \(V^* \)’s request.
- Output \((G, \text{Boxes}, b, \text{Keys to boxes}) \) as transcript.

\[\text{N.B. When we replace ideal box w/ a real commitment, we get a protocol that is only computational ZK.} \]
Life lessons to remember

* If you can simulate an interaction, you haven’t learned anything useful from it.
 Ideally doesn’t apply to this lecture.

* Input to simulator ≤ what leaks.

* Anything that has a traditional (NP) proof also has a zero knowledge proof system.