Lecture 4: Kero

Henry Corrigan - Gibbs CS35S - 5 pring 2019
\qquad
\qquad
\qquad

Plan

- Reap: Interactive proofs
- Zero knowledge
* What it is
* Why it's useful
* How we define it
- Example: ZK Proof for HAMCYLLE

Reminders
\rightarrow HL 1 due Friday at Som via Gradescope \rightarrow Come to ∂H today.
\rightarrow Late day policy
Today

- We will be discussing the most beautiful idea in all of CS. Maybe of all tim?
a Controversial but still true-
- Zero knowledge - How to prove to you that I know something (eeg. ϕ is SAT) without leaking anything else io you (SAT assignnat)
- Amazingly clever, also useful in many corjpto
\rightarrow protocols. Importance of definitions.
Original zk pager is important b/c of defin $\sigma Z k$, not because of the specific constructions.
\longrightarrow Defin is $>1 / 2$ the battle
\rightarrow Caper rejected 3 (I think) time before published \rightarrow Lessm?

Goidwasser, Micali, Rackoff (STOC,'8S)

Recap: Interactive proofs
On Monday, florian introduced interactive proofs Goal of a proof: Convince $\underbrace{\text { someone }}_{\text {"the verifier" }}$ of $\underbrace{\text { something }}_{\text {statement" }}$

In complexity theory, we consider statements of the form:

Examples: " N is the product of exactly two primes $N \in\{p q \mid$ primes $p, q\}$
"The Pythagorean The is true." PYTAME\{ $\left.\begin{array}{c}\text { true statements } \\ \text { sore } \\ \text { formal } \\ \text { system }\end{array}\right\}$
" ϕ is 1. unsatisfiable sAT formula"
$\phi \in\{$ set of unsatisfiable SAT instances"

Recap
Conventional Proof

- Ir might be hard to find (exponential time)
- IT should be easy to check (polynomial tine, deterministic)

Say that we want to prove that $x \in \mathcal{L}$.

Can do so w/
a conventional $\Longleftrightarrow \mathcal{L}$ is an NP proof language
e.g. to prove that ϕ is SAT, P sends satisfying assignment to V.
Blum $N P=$ "nifty proof"

Recap What if we allow P \& to internet?
What if V can use randomness?

Properties we want

1. Completeness $\left.\forall x \in \mathcal{L} \quad \operatorname{Pr}\left[\langle P, V\rangle(x)=" a c c e t^{t}\right]\right] \geqslant 2 / 3$
2. Soundress $\quad \forall \times \notin \mathcal{L} \quad \operatorname{Pr}\left(\left\langle p^{*}, v\right\rangle(x)="\right.$ accept $\left.{ }^{\chi^{\prime \prime}}\right] \leqslant 1 / 3$.

Can reduce to reglisible awl repetition.

Q: Why is interaction useful?
A1: (On monday)
IP captures a larger class of problems. \longrightarrow PSPACE ... prove to you that a graph is NOT
A2: (Today)
Interactive proofs can have a third surprising property.
Properties we wont
3. Zero knowledge V "learns nothing" from her interaction with P, except that $x \in \mathcal{L}$.
Huh? What does this even mean?

Application: Can prove to yon that I executed some protocol correctly without reveling any of my secrets.
Defin of ZK used to define security in many protrols \rightarrow want to strow that "nothing leaks"'

Q: What does it mean to "learn nothing" from an interaction?

Ex. Me in Fth grade

Ex. Military spokesperson.
INTuITIon: If V can easily write down a transcript of its interaction with P, then V has rit learned anything useful from P.

If you can simulate the corrtranswipt, no need to have it at all \longrightarrow Applications in red life?

The surprising thing is that there is a very clean way to formalice this intuition
3. Zero knowledge: \forall efficient V^{*}, \exists efficient Sim

$$
\begin{aligned}
& \text { sit. } \forall x \in \mathcal{L} \\
&\left\{V_{i e u_{v^{*}}}\left[P(x) \leftrightarrow V^{*}(x)\right]\right\} \approx\{\operatorname{Sim}(x)\} \\
&\left\{\begin{aligned}
& \text { There ore Jiff flavors } \\
& \text { of } Z k \\
& \text { perfect }= \\
& \text { statistical } \approx_{s} \\
& \text { comp vationl } \approx
\end{aligned}\right.
\end{aligned}
$$

Intuition:

- Whatever V can learn by interacting w/ P, it can learn siting at hone by running Sin.
- Holds even if V^{*}

- key to remember $=$ Input to Sim essentially castes what the (P, V) interaction leaks.
There is an annoying technical issue that comes up when you want to run a $E k$ protocol mans times.
\rightarrow "Auxiliary-input $2 K^{\prime \prime}$ See Goldreich §4.3.3

ZK Protocol for Hamiltonian Cycle [Blum 87 (?)]

- HamCycle is an NP-Complete problem
\hookrightarrow Anything provable (in NP) is provable
\rightarrow Reduce to Harcjcle instance, use this protocol. Wigters 87 In theory, con pron to you that I know an Oday in :OS without revealing t to your. And so on....
Reminder: $D_{e} f_{n}^{\prime}$ of $H_{\text {am }} \mathrm{Cg}$ ole $G=(V, E)$ undinected graph

Cycle in graph that visits each vertex once

See Knuth (linted from course website) for fun history of this problem.
$H_{\text {am Cycle }}=\{G \mid G$ has a Hamiltonian cycle $\}$
Adjacency Matrix

$$
\left.A=\begin{array}{lllllll}
1 & 1 & 2 & 3 & 4 & 5 & 6 \\
2 & 1 & 1 & 1 & 0 & 0 \\
3 & 1 & 0 & 0 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 & 0 & 1 \\
4 & 1 & 1 & 1 & 0 & 0 & 0 \\
5 & 0 & 1 & 0 & 0 & 0 & 1 \\
6 & 0 & 0 & 1 & 0 & 1 & 0
\end{array} \right\rvert\, \quad A_{i, j}= \begin{cases}1 & \text { if }(i, j) \in E(G) \\
0 & 0 . w .\end{cases}
$$

Trivial Protocol

ZK Protocol (Blum)
Following Blum, well imagine that P can send V "locked boxes," which we implement w) cruptogroplic commitments.

Prover (G)
Verifier (G)

* Put each of the n vertices v_{1}, \ldots, v_{n} into n boxes B_{1}, \ldots, B_{n} in random order.
* Into box $B_{i j}, p u t \begin{cases}1 & \text { if vertices in } B_{i} \text { and } B_{;} \\ 0 & \text { are adjacent in } G \\ 0 . & \text { ow. }\end{cases}$
$B_{i}{ }^{\prime}$ = relabeling of vertices
$B_{i j} ;$ = ad; matrix under relabeling
Send the $n+\binom{n}{2}$ boxes

$$
\overrightarrow{F l i p}_{p} \text { a coin } b \epsilon^{k}\{0,1\}
$$

If $b=0$: "Show me G ".
If $b=1$: "Show me the cycle".

If $b=0$: Unlock all boxes.
If $b=1$: Unlock only boxes corresponding to Ham Cycle in C.

Check:
$b=0$ Got a perm of adj, matrix keys

$$
\rightarrow b=1 \cdot \text { Coot a cycle }
$$

Accept if so.

Some Comments
Some particular type of hash f_{n}.
Imagine:

Properties

1. Complete.
2. Sound.

If $G \notin H_{A m} C_{y c L E}$, then no matter what P^{t} puts in boxes, V will reject w. $\geq 1 / 2$.
3. Zero knowledge. We construct eff Sim.

$$
\begin{aligned}
& \operatorname{Sim}\left(G \in H_{\Delta m} C_{y c l e}\right) \\
& - \text { Curs } \hat{b} \leftarrow^{\kappa}\{0,1\} .
\end{aligned}
$$

- If $\hat{b}=0$, put random perm of Adj mit in Boxes
- $\hat{b}=1$. put random perm of cycle in Boxes.
- Run $b \longleftarrow V^{*}\left(C_{1}\right.$, Boxes)
- If $b \neq b, \quad \Delta b o r t$.
- Else, open boxes per V^{*} 's request
- Output (C1, Boxes, b, Keys to boxes) as transcript.
[F.B. When we replace idel box wt a real] commitment, we get a protocol that is only computational zee.

Life lessons to remember

* If you can efficiorty simulate ar interaction, you havenit learned anything useful from it.
\longrightarrow Ideally doesit apply to this lecture.
* Input to simulator \approx what leaks.
* Anything that has a traditional (NP) proof also has a zero knowledge proof system.

