CS 355 Lecture 7: Multiparty computation

Previonsty:

- Interactive protocols for proofs:
\rightarrow What about more general protocols?
\rightarrow what about $n>2$ parties?
- Secret Sharing:
\rightarrow our first n-party functionality \square
\rightarrow can we do more than merely share secrets?

Today: Multiparty Computation (MPC)

Anything that can be computed with a
trusted third party can also be securely computed without?

Other Applications:

* E-voting
* Private auctions
* etc.

Q:- Why don't we use MPC for EVERYTHING?
A: It's not very efficient (n $100-1000 \times$ overhead for $M L$)

Defining MPC

There are n parties P_{1}, \ldots, P_{n} with inputs x_{1}, \ldots, x_{n} that want to jointly compute a lunation

$$
y=f\left(x_{1}, \ldots, x_{n}\right)
$$

we can generalize this
So each party gets its own arpent y :

The adversary corrupts a subset of the parties and makes them collude to break security of the protocol.

There are two main security mo dels for MPC:
Semi-honest: The corrupted parties follow the protocol specification exactly. After the protocol completes, they look at the transcript and try to extract information about the honest parties' inputs.

Malicious: The corrupted parties may arbitrarily deviate from the protocol specification at any time, to learn extra information about the honest parties' inputs or fool them into producing the wrong output.

The verifier in an HVZK proof is an example of a semi-honest adversary.

For this lecture, weill locus on the sem:-honest setting.

Defining security for semi-honest MPC:

Informally: "anything the adversary learns in an execution of the MPC protocol. it could also have learned if all parties were interacting with a trusted third party"
 corrupted parties

This is also called the "real-ideal paradigm". What does the adversary learn in the ideal world?

* The inputs of corrupted parties
* The output of the computation \swarrow nat st meekest lecture on next week's lecture on
differential privacy

Formally, if C is the set of corrupt parties, there exists an efficient simulator sim such that for all functions f and inputs x_{1}, \ldots, x_{n} :

$$
\operatorname{Sim}(C, \underbrace{\left\{x_{i}: i \in C\right\}}_{\begin{array}{c}
\text { the inputs of } \\
\text { corrupt parties }
\end{array}}, \underbrace{\left.y=f\left(x_{1}, \ldots, x_{n}\right)\right)}_{\begin{array}{c}
\text { the output of } \\
\text { the computation }
\end{array}} \approx \underbrace{\left\{v_{i}: i \in C\right\}}_{\begin{array}{c}
\text { the view of } A \text { in a a } \\
\text { real execution of the polar }
\end{array}}
$$

Recap: additive secret sharing
 $r_{1}, \ldots, r_{n-1} \leftarrow^{R} \mathbb{F}_{p}$ and set $r_{n}=S-\sum_{i=1}^{n-1} r_{i} \in \mathbb{F}_{p}$

We use [s] to denote additive secret sharing of s

$$
[s]=\left(r_{1}, r_{2}, \ldots, r_{n}\right)
$$

MPC by computing on secret-shared data

- Each party has an input $x_{i} \in \mathbb{F}_{p}$
- The function f is represented as an arithmetic circuit over \mathbb{F}_{p} (ie. a circuit with addiction and multiplication gates over \mathbb{F}_{p}).
- The parties start by secret sharing their inputs:

Alice: Chooses

$$
r_{A B}, r_{A C} \longleftarrow \mathbb{F}_{P}
$$ and sends one share to Bob and one to charlie. Alice's share is $r_{A A}=x_{A}-r_{A B}-r_{A C}$ rec

If we can perform additions and multiplications over secret-shared data, we get a MPC protocol secure against semi-honest adversaries:

1. Each party secret shares their input with every otter party the inputs of the gate are secret shard
2. For each addition gate in the circuit, with inputs [a], [b] the parties compute shares of $[a+b]$
τ the parties have a secret sharing of the output of the gate
3. For each multiplication gate, with inputs [a], [b] the parties compute shares of [ab]
4. Each party publishes their share of the out put value so each party can reconstruct the output.

Example: $f\left(x_{A}, x_{B}, x_{C}\right)=\left(x_{A}+x_{B}\right) \cdot x_{C}$

Charlie: $\quad r_{A C}, r_{B C}, r_{C C}$
rect, rec
$r_{c}^{\prime \prime}$

$$
\left[x_{A}\right] \quad\left[x_{B}\right]\left[x_{C}\right]
$$

the parties start by secret sharing their inputs by some means, the parties (ie, $X_{A}=r_{A A}+r_{A B}+r_{A C}$) end up with shares of $X_{A+} X_{B}$

$$
\left[\left(x_{A}+x_{B}\right) \cdot x_{C}\right]
$$

by sone means, He parties end up with shares of the output $y=\left(x_{A}+x_{B}\right) \cdot x_{C}$ (ie, $x_{A}+x_{B}=r_{\dot{h}}+r_{\dot{B}}+r_{\dot{c}}^{\prime}$)

$$
\text { (ie, } \left.y=r_{n}^{\prime \prime}+r_{i}^{\prime \prime}+r_{c}^{n}\right)
$$

Additions of shares
Given Shares of a and $b,[a+b]=[a]+[b]$
additive shares of a
If $[a]=\left(a_{1}, \ldots, a_{n}\right)$ where $\sum_{i=1}^{n} a_{i}=a \in \mathbb{F}_{p}$
$[b]=\left(b_{1}, \ldots, b_{n}\right)$ where $\sum^{n}{ }^{n}, b_{i}=b \in \mathbb{F}_{p}$
Then $[a+b]=\left(a_{1}+b_{1}, \ldots, a_{n}+b_{n}\right)$ satisfies $\sum_{i=1}^{n}\left(a_{i}+b_{i}\right)=a+b \in \mathbb{F}_{p}$

Similarly: - Scalar multiplication: $[k a]=k \cdot[a]$

- addition by constant: $[a+k / n]=k+[a]$
\uparrow alternatively, one parts cain ald k to their share and
How do we multiply shares? can all other parties do nothing
- Using public-ker crypto
* Oblivious Transfer
* Somewhat Homomorphic Encryption
(this gives computationally secure MPC for a semi-hovest adversary that corrupts n-1 parties)
- Using Shamir secret Sharing
(this gives information theoretically secure MPC for a semi-hovest adversary that corrupts <n/2 parties)

Information theoretic MPC
(or, how to multiply additive secret shares using shamir secret sharing)

Recap: t-out-of-n Shamir Secret Sharing

$$
f(x)=\downarrow^{\text {secret } \in \mathbb{F}_{p}}+x+c_{1} x^{2}+\ldots+c_{1-1} \cdot x^{t-1}
$$

Shares: $Y_{i}=f(i)$ for $i \in[n]$
reconstruction: for any subset of t parties (egg. 1,.,t):
$\underset{\substack{V \text { andermonde } \\ \text { matrix }}}{ } V^{-1} \circ\left[\begin{array}{c}y_{1} \\ \vdots \\ y_{r}\end{array}\right]=\left[\begin{array}{c}s \\ c_{1} \\ \vdots \\ c_{t-1}\end{array}\right]$

In particular,

$$
S=\left(V^{-1}\right)_{1} \cdot\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{r}
\end{array}\right]=\overbrace{\sum_{i=1}^{t} \lambda_{i} \cdot y_{i}}^{\text {additive sharing of } s y_{\text {these are the }}}
$$ list row of v^{-1}. They are also called Lagrange coellicients

Goal: Given additive shares [a].[b], generate additive shares [ab] using shamir secret sharing.

Step 1 (additive to Shamir):

$$
\Delta[a b] \neq\left(a, b_{1}, \ldots, a_{n} b_{n}\right)
$$

lets assume
n is ind
this is past) $P^{\prime!}$'s
abbitise share ole

- Each party P : picks a polynomial f_{i} of degree $\frac{n-1}{2}$ such that $f_{i}(0)=a_{i}$ and sends a share $f_{i}(j)$ to all otter parties. (this is a shamir secret sharing of a_{i})
- The parties locally sum up their shares. They now have Shamir secret shares of a (and we do the same for b)

Proof: Party Pis share is $\sum_{j=1}^{n} f_{j}(i)=\left(\sum_{j=1}^{n} t_{j}\right)(i)=F(i)$. This is a point on a polynomial $F(x)$ of degree $\frac{n-1}{2}$ and $F(0)=\sum_{j=1}^{n} f_{j}(0)=\sum_{j=1}^{n} a_{j}=a$.

Step 2 (multiplying Shamir shares):

- Each party P_{i} has shares $F(i), G(i)$ where F, G are polynomials of degree $\frac{n-1}{2}$ and $F(0)=a, G(0)=b$
- Each party locally multiplies its shares: $\gamma_{i}=F(i) \cdot G(i)$ These are points on a polynomial $H(x)=F(x) \cdot G(x)$ of degree $n-1$ and $H(0)=F(0) \cdot G(0)=a \cdot b$
Thus, the parties now have a n-out-of - n Shamir secret sharing of $a \cdot b$
To get an additive sharing, we use Lagrange coefficients:

$$
\begin{aligned}
& a b=H(0)=\left(V^{-1}\right)_{1} \cdot\left[\begin{array}{c}
s_{1} \\
\vdots \\
s_{n}
\end{array}\right]=\sum_{i=1}^{n} \lambda_{i} \cdot H(i)=\sum_{i=1}^{n} \underbrace{\lambda_{i} \cdot F(i) \cdot G(i)}_{\begin{array}{l}
\text { this is pasty } p_{i}^{\prime} s \\
\text { additive share of ab }
\end{array}} \\
& \left(\left[\begin{array}{cccc}
11^{1} 1^{2} & \cdots & 1^{n-1} \\
12^{1} 2^{2} & \cdots & 2^{n-1} \\
\vdots & \ddots & \vdots \\
1 n^{1} n^{2} & \cdots & n^{n-1}
\end{array}\right]\right)
\end{aligned}
$$

Wrapping up:

- If we use $\frac{n+1}{2}$-out-of-n Shamir secret sharing, we can multiph secret shared data and perform MPC.
- The number of corrupted parties must be less than $\frac{n+1}{2}$, otherwise the Shamir shares aren't private ($\frac{n+1}{2}$ colluding parties can reconstruct a and b)

As long as (strictly) more than $n / 2$ parties are honest (an honest majority), the protocd is secure.

What if we want malicious security?

- Veriliable secret sharing
- Error correcting codes (Shamir secret sharing \approx Reed Solomon coles!)
- We need $>2 / 3$ of the parties to be honest [Benor - Goldwasser - Widgerson]

What if we want to support more corruptions? In particular, what happens when $n=2$?

We need Crypto:

* Multiply shares using Oblivious Transfer or Somewhat Homomorphie Encryption
* For malicious security: add z_{k}-proofs that each step of the protocd correctly followed the specification (tome caveats) [Goldreich-Micaliwidgersoi]

