
amputation

CS 355 Lecture 7 : Multiparty -

computation

Perviously :

• Interactive protocols for proofs :

→ what about more general protocols ?
→ what about n > 2 parties ?

• Secret sharing :

→* our first n - party functionality I
⇒ can we do more than merely share secrets?

To-day : Multiparty computation (HPC)

t.IEF7?-ei.deswcithreEcomputedwithou#stehist

G

o
.
. ÷Ii⑦ mages

Trusted Party
o

¥
Classifier trained
on cat images if

thereat :

* E - voting

* Private auctions

* etc
.

¥.si#i:::::::::.::c:::::e::::::.:.I

Defining

There are n parties P±
.

. . .

,
Pa with inputs x

.
.

. . .

,
in

that want to jointly compute a lunation

y = f- (x . .
. . .

,
Xu)

1-

\
we can generalize this
so each party gets its own

output Yi

The adversary corrupts a subset of the parties
and makes them collude to break security of the protocol

.

There are two main security models for MPC :

Semin : The corrupted parties follow the protocol specification
exactly . After the protocol completes

,
they look at the transcript

and try to extract information about the honest parties' inputs
.

Malicious : The corrupted parties may arbitrarily deviate from the

protocol specification at any time
,
to learn extra information

about the honest parties ' inputs or fool them into producing
the wrong output .

The verifier in an HVZK proof is an example of a

semi - honest adversary .

For this lecture
,

we
' Il focus on the senest setting .

Definition :

Informally :
"

anything the adversary learns in an execution
of the MPC protocol ,

it could also have

learned if all parties were interacting with

a trusted third party "

ideal world real world
#

I

Trusted party .

°
°

.

.

I
.

.

.

Puca)

:÷÷÷ ft i :÷i÷÷¥÷ :
Pzcxz) '

.
.

'

Pc P2
. . .

Pu
-

- -

-

corrupted
parties

corrupted
parties

This is also called the " real - ideal paradigm
"

.

What does the adversary learn in the ideal world ?

* The inputs of corrupted parties we 'll get back to this in

next week 's lecture on* The output of the computation ←
differential privacy

Formally
,
if C is the set of corrupt parties ,

there exists an efficient
simulator Sim such that for all functions f and inputs Xi

,
. . .

, Xp :

Sim (C
,
{ Xi : iec }

,
y -

- fcx
.
.

. . . ,x ,) Ic { Vi : ie C }
To F- #

the inputs of the output of
corrupt parties the computation the view of A in a

real execution of the protocol

Recapiooadditiesecretshariug
← alien.

¥

.EE?.?h:..ErEtpEE:aasmensnrEartises.s?.ian!ee
We use [s] to denote additive secret sharing of s

[s) = (r .
,

ra
,

.
. .

, rn)

MPCbycomputiagouse.ae#shaeddata
• Each party has an input Xi E Fp

• The function f is represented as an arithmetic
circuit over Fp (i.e

.
a circuit with addition and multiplication

gates over Fp) .

• The parties start by secret sharing their inputs :

RAB ⇐ Fp

FAA # r BB

Alice (x #) Bob GB)
⇐

¥
t⇐÷÷÷ :*

.

and sends one share to

µAC
y

) re ,
Bob and one to Charlie

.

EA Alice's share is ra # = XA -

rap - rae
✓

Charlie Kc
rcc

If we can perform additions and
multiplications over secret - shared data

,
we

get a MPC protocol secure against semi - honest
adversaries :

1
.
Each party secret shares their input with every other party

the inputs of the

✓ I gate are secret shared

2 . For each addition gate in the circuit
,
with inputs [a]

,
[b] the parties

compute shares of [atb]
1 the parties have a secret

sharing of the output of the
gate

3. For each multiplication gate, with inputs [al
,
[b] the parties

compute shares of Cab]

4. Each party publishes their share of the output value so each

party can reconstruct the output .

Examples f- Cxa
, xp ,

Xc) = Kat XB) . X c

'
a

Alice : RAH , RBA
, KA RA

,
RCA ra

- addition multiplication
gate gate

1 "

too : RAB
, RBB , reps ⇒ RB

, rep ⇒ r B

11

Charlie : Htc
, RBC , rcc re

'
, rcc rc

[XA) [XB) [Xc] EXATXB] Cxc] [Cx # texts) - Xc]
the parties start by secret by some means

,
the parties by some means

,
the parties

end up with shares of the

sharing their inputs end up with shares of XATXB output + = Kat XB) - Xc

(i - e .

, XA = rapt rag + r # c) (i - e . , ×AtXB= ra
'

t r B
'

t rd) (i.e , y = ra
' '

+ rpj
' tri)

Additions of shares component - wise addition

-

t

Given shares of a and b
,
[atb] = [a) + [b) x]

additive shares of a

e-

If [a] = (a

.
an) where I . ai = a E Fp

[b] = (b bn) where I !
.
bi = b E Ifp

Then [atb] = (a. tb

.
autbu) satisfies II. Cait bi) = Atb E Fp

Similarly : o scalar multiplication : [KAI = K . [a]
-

o addition by constant : [at Kla] E Kt [a]
[alternatively

,
one party

can add k to their share and

How do we multiply shares ?
a " other parties do nothing

⑧

• Using public - key crypto
* oblivious Transfer
* Somewhat Homeomorphic Encryption

(this gives computationally secure MPC for a

semi - honest adversary that corrupts u -1 parties)

• Using Shamir secret sharing
(this gives informationtheoretically secure MPC for a

semi - honest adversary that corrupts cute parties)

IulormationtheorePC

(or
,
how to multiply additive secret shares using

Shamir Secret sharing)

Recap : t - out - of - n Shamir Secret sharing
#

random

¢
poly of degree

Lt
secret E Ep

f- (x) =
Ft

x t c
,
I t

. . .
t C+ . .

. Xt - l

Shareef Yi = f- Ci) for i Eff

reconstruction for any subset of t parties (e.g .

i
.

. . .

.
t) :

Vanden .ae#
V

- to =/ ?)

÷÷÷÷÷.i÷÷÷÷i÷
elements in the

first row of P "
.

They are also

called Lagrange
coefficients

(ai ,
- - is

an)
z , f (bi , . - -

,
bn)

Goat Given additive shares [a) Ib]
,
generate additive shares [ab]

Using Shamir secret sharing .
-

I [ab] f (a. be , . . .

. anbu)

step 1 (additive to Shamir) : let's assume
this is part Pi 's

n is odd
additive share of a

b I
• Each party Pi picks a polynomial fi of degree Z' such that fi 6) = ai

and sends a share fi Cj) to all other parties a (this is a Shamir secret sharing of ai)

• The parties locally sum up their shares
. They now have

Shamir secret shares of a (and we do the same for b)

Proof Party Pi 's share is EE , ti Ci) = (Iii , ti) Ci) = Fci)
.

This is a point on a

polynomial FG) of degree E' and Flo) = Ii , filo) = Iii , aj = a
.

Step2hamihwe) :

• Each party Pi has shares Fci)
,
Gci) where F. 6 are

polynomials of degree E ' and Flo) = a
,
Coco) = b

• Each party locally multiplies its shares : yi = Fci) . Gli)
These are points on a polynomial HH) = FCA . 6 (x)

of degree n - I and H (o) = Flo) - Glo) = aob

Thus
,
the parties now have a n - out - of - n Shamir secret sharing of a. b

To get an additive sharing
,

we use Lagrange coefficients :

ab = H Co) = (V - 'to f = IZ X : o H Ci) = 7% li.FCD.CI
- I f this is party Pi 's

f ÷÷÷÷÷÷I)
additive snaeotab

1 nd n
'

. . . n
" - '

Wrapping :

• If we use It ' - out - of - n Shamir secret sharing
,

we

can multiply secret shared data and perform MPC
.

• The number of corrupted parties must be less than
II

,
otherwise the Shamir shares aren't private
(n't colluding parties can reconstruct a and b.)

As long as (strictly) more than Nz parties

are honest (auhonestmajoi.tt) ,

the protocol is secure
.

whatifwewautmalicioussecuritx-Verilia.be
secret sharing

- Error correcting codes (Shamir secret sharing x Reed Solomon codes !)

- we need ¥213 of the parties to be honest
[Ben - or - Goldwasser - Widger son]

EHI-pifn.EE?awItattonaspueEgortwuemnorenEor=.ptions

We need Crypto ?
* Multiply shares using oblivious Transfer or Somewhat Homeomorphic Encryption
* For malicious security : add ZK - proofs that each step of the protocol correctly

followed the specification (t some caveats) [Gold reich - Nicoli -

Widger son]

