CS 355 Lecture 9: Dillerential Privacy

Last week:

- MPC
- PI

Today: "MPC is not enough"

- Brief recap on MPC and PIR
\rightarrow Does MPC "imply" PIR? (..)
\hookrightarrow Does MPC protect "privacy'? (...)
- Intro to differential privacy
- Defining privacy
- The Laplace mechanism
- Composition 2 post-processing

HW3 is out?

PER: \quad Client $\left(i, 1^{\lambda}\right) \xrightarrow[a]{a} \operatorname{Server}\left(x, 1^{\lambda}\right)$

$$
\left.x_{i} \& \operatorname{Recoun}_{\text {la }}\right)
$$

Two flavors:

Single -server

- cryelograplic
- computational
security

Question: Does MPC "imply" PIR?
egg, given a maliciously-secure 2PC protocol for arbitrary functions f, can you constrict single -Server PIR?

Answer: Not necessarily!

Why: MPC says we can compute the function

MPC protocol desist guarantee that communication is o(|x|)

PIR is an example of a cryptographic primitive with a stricter notion of "efficient" than "everrini.ng should be pot (λ)". Many intresesing primitives in Crypto have such requirements (e.9. Full Humurdece Encrertion) and a lot of recent research tries to make MPC and $Z K$ proofs that are efficient in a practical sense.

MPC and privacy:
We want to know if smoking causes cancer Study: collect (S, C) prom n participants and compute $y=\frac{\sum_{\substack{i=1 \\ \text { sincincin}}}^{n} c_{i}^{n} s_{i}}{\sum_{i=1}^{n} s_{i}}$

$$
\begin{aligned}
& \begin{array}{l}
\text { MPC protocol } \\
\text { secure against } \\
\text { un corruptions }
\end{array} \\
& = \\
& =
\end{aligned}
$$

\longrightarrow does Alice smoke? does Alice have cancer?

- Is this really "private"?
- Do we really need to know the exact value of y to understand the link between smoking and cancer?
\rightarrow there's sampling noise anyway so no!

Private data analysis

Users
Alice, $\vec{\rightarrow}$,
Bob, \vec{x}_{2}

Strong privacy notion (Dalenius, (977):
"The analyst learns nothing about Alice that it couldi't hare learned without the database D "

This is too strong! Eng. if the Andyst knows that Alice smokes, and it learns from D that "smoking increases cancer risk", it has learned something about Alice (she is noe likely fo lave cancer).
\rightarrow this remains true even if Alice is not in the database? \rightarrow the only way to satisfy this notion is it the Andyst leans nothing at all!

Differential privacy
"The analyst learns nothing about Alice that it could it also have learned if Alice was not in the database"

Differential privacy is a promise [Dork, Roth 2olh]
Whether Alice agrees to give her data to the curator or not has no influence on what an adversary can learn?
(so ste might as well give her data for the advancement of Science!)
Note: the def prevents the analyst from learning individual lacks about Alice but not from learning "population-level" Pacts such as "smoking causes cancer".

Definition: Two databases D, D^{\prime} are neighboring, denoted $D \sim D^{\prime}$, if $|D|=\left|D^{\prime}\right|$ and D, D differ in a single row.

Let M be the curator's (randomized) algorithm for answering the analyst's queries, ie.

$$
\begin{aligned}
& M: X^{n} \times Q \rightarrow Y \\
& \underset{\text { databases }}{M\left(\underset{v_{\text {query }}}{D}, q_{\hat{\tau}_{\text {answer }}}\right.}
\end{aligned}
$$

Definition [ε-differential privacy, Dwork-Mcshecry-Nissin-smimh Zoos]:
An algorithm M is ε-DP if for every pair of neighboring databases D, D^{\prime}, every query $q \in Q$ and every event $S \subseteq Y$:

$$
\mathbb{P}[M(D, q) \in S] \leqslant e^{\varepsilon} \cdot \mathbb{P}\left[M\left(D^{\prime}, q\right) \in S\right]
$$

Remarks - Any "bad "event when Alice is in the DB would have happened with similar probability if Alice was not in the DB

- Think of $\varepsilon>0$ as a small constant \leftrightarrow why can't ε be negligible (say in (DI)? [Homework]

Q: Can any query be answered with differentiae privacy (and some utility)?
$A: N o!$

Example:

If M gives an accurate answer with high probability for one of the two databases, it must give a very inaccurate answer with roughly the Same probability for the other database.

The Laplace Mechanism: E-DP for low-sensitivity queries

We will show how to get differential privacy for real-valued queries $9: x^{n} \rightarrow \mathbb{R}$. For example, "counting queries":

$$
\begin{aligned}
& D=\begin{array}{l}
\frac{\text { mane }}{\text { Alice }} \frac{\text { sunder }}{1} \\
\text { Bob } 1 \\
\text { chare } 0 \\
\text { Daisy } 1
\end{array} \quad q=\text { \# of smokers } \\
& \quad q(D)=3
\end{aligned}
$$

Definition (sensitivity): For a query $q: \chi^{n} \rightarrow \mathbb{R}$, the sensitivity of q is $\Delta q=\max _{D \sim D^{\prime}}\left|q(D)-q\left(D^{\prime}\right)\right|$

Q: What is the sensitivity of a counting query?
$A: 1$

Q: What is the sensitivity of the "maximum salary" query?
A : unbounded

Definition (Laplace distribution):
The centered Laplace distribution with parameter b,
$L_{a p}(b)$, has density $f_{\text {Lap }(s)}(z)=\frac{e^{-|z| / b}}{2 b}$

Laplace Mechanism $M_{L}(D, 9)$

1. Compute $a(D)$
2. Sample $V \sim \operatorname{Lap}\left(\frac{\Delta q}{\varepsilon}\right)$
3. Output $q(D)+v$

- M_{l} is $\varepsilon-D P$

Proof: For any $D \sim D^{\prime}, y \in \mathbb{R}$ and query a, let $b=\frac{\Delta a}{\varepsilon}$. Then,

$$
\begin{aligned}
& \frac{\mathbb{P}\left[M_{c}(D, q)=\gamma\right]}{\mathbb{P}\left[M_{c}\left(D_{0}^{\prime}, q\right)=\gamma\right]}=\frac{\mathbb{P}_{v \sim \operatorname{Cap}}(b)[v=y-q(D)]}{\mathbb{P}_{v \sim \operatorname{Cap}}(b)\left[v=y-q\left(D^{\prime}\right)\right]}=\frac{\frac{1}{i b} \cdot e^{-|y-q(D)| / b}}{\frac{1}{4 b} \cdot e^{-\left|y-q\left(D^{\prime}\right)\right| / b}} \\
& \begin{array}{l}
=e^{\frac{\varepsilon}{\Delta q} \cdot\left(\left|y-q\left(D^{\prime}\right)\right|-|y-q(D)|\right)} \int_{\begin{array}{c}
\text { reverse } \\
\text { inamguar }
\end{array}}^{\substack{\text { inequality }}}|x|-|y| \leq|x-y|
\end{array} \\
& \begin{array}{l}
\leq e^{\frac{\varepsilon}{\Delta q} \cdot\left|q\left(D^{\prime}\right)-q(D)\right|} \quad \begin{array}{l}
\text { del of } \\
\text { sensitivity }
\end{array} \\
\leq e^{\frac{\varepsilon}{\Delta q} \cdot \Delta a} \quad \text { 盾 }
\end{array} \\
& =e^{\varepsilon}
\end{aligned}
$$

For any value returned by M_{2} on D, M_{c} would have returned the same value with approx. the same probability on D^{\prime}.

- M_{L} is accurate:

$$
\forall B>0, \mathbb{P}\left[\left|M_{2}(D, a)-q(x)\right|>\frac{\Delta a}{\varepsilon} \cdot \ln \left(\frac{1}{B}\right)\right] \leqslant B
$$

Example: for a counting query $(\Delta q=1)$, if M_{L} is ε-DP for $\varepsilon=0.1$, then with 99% probability, the error in the counting query will be less than $\frac{1}{0.1} \cdot \ln \left(\frac{1}{0.01}\right) \simeq 46$

Note that the noise, and thus error, are independent of the size of the database.

Proof: Follows from the following standard concentration inequality for the Laplace distribution:

$$
\mathbb{P}_{v \sim \operatorname{Lap}(b)}[|v|>c \cdot b]<e^{-c} \quad \text { for ar constant } c
$$

Properties of differential privacy

- Post-processing: Let $M: X^{n} \times Q \rightarrow Y$ be \mathcal{E} - DP and let $f: Y \rightarrow Z$ be any (randomized) lunation. Then $(f ; \mu): x^{n} \rightarrow z$ is $\varepsilon-D P$.

Proof (for deterministic \neq):
Fix any neighboring databases D, D^{\prime}, query q and event $S \subseteq z$. Let $T=\{y \in Y: f(y) \in S\}$. Then:

$$
\begin{aligned}
\mathbb{P}[f(M(D, q)) \in S] & =\mathbb{P}[M(D, q) \in T] \\
& \leqslant e^{\varepsilon} \cdot \mathbb{P}\left[M\left(D^{\prime}, q\right) \in T\right] \\
& =e^{\varepsilon} \cdot \mathbb{T}\left[f\left(M\left(D^{\prime}, q\right)\right) \in S\right]
\end{aligned}
$$

Remark: Whatever the analyst does with the answers to the queries, DP is guaranteed!

- Composition: Let $M_{1}, M_{2}, \ldots, M_{n}$ be algorithms where $\mu_{i}: X^{n} \times Q \rightarrow Y_{i}$ is $\varepsilon_{i}-D P$.

Then $M(D, q) \longmapsto\left(M_{1}(D, a), M_{2}(D, q), \ldots, M_{n}(D, a)\right)$ is $\varepsilon-D P$ for $\varepsilon=\sum_{i=1}^{n} \varepsilon_{i}$.

Proof: Fix any $D \sim D^{\prime}$, query Q and $\left(y_{1}, \ldots, y_{n}\right) \in \overbrace{\psi_{1} \times \ldots x^{2} y_{n}}^{\text {range of } M}$

$$
\begin{aligned}
\mathbb{P}\left[M(D, a)=\left(y_{1}, \ldots, y_{n}\right)\right] & =\prod_{i=1}^{n} \mathbb{P}\left[H_{i}(D, a)=y_{i}\right] \\
& \leq \prod_{i=1}^{n} e^{\varepsilon_{i}} \mathbb{P}\left[M_{i}\left(D^{\prime}, a\right)=y_{i}\right] \\
& =e^{\sum_{i=1}^{n} \varepsilon_{i}} \cdot \mathbb{P}\left[M\left(D^{\prime}, q\right)=\left(y_{1}, \ldots, y_{n}\right)\right]
\end{aligned}
$$

Remark: The more queries are answered, the less privacy remains?

