
CS 355: Topics in Cryptography Spring 2020

Problem Set 3

Due: May 18, 2020 at 11:59pm

Instructions: You must typeset your solution in LaTeX using the provided template:

https://crypto.stanford.edu/cs355/20sp/homework.tex

Submission Instructions: You must submit your problem set via Gradescope. Note that Gradescope
requires that the solution to each problem starts on a new page.

Bugs: We make mistakes! If it looks like there might be a mistake in the statement of a problem, please
ask a clarifying question on Piazza.

Problem 1: Conceptual Questions [10 points]. For each of the following statements, say whether it is
TRUE or FALSE. Write at most one sentence to justify your answer.

(a) Let 〈P,V 〉 be a zero-knowledge interactive protocol for some language. The protocol has perfect
completeness and soundness error 1/3. Which of the following are true:

i A malicious verifier interacting with an honest prover will always accept a true statement.

ii An honest verifier interacting with a malicious prover will “learn nothing” besides the state-
ments validity.

(b) Consider a modified version of Schnorr’s signature in which the signing nonce r is computed as
r ← H(m), where H : {0,1}∗ →Zq is a hash function (modeled as a random oracle), m is the message
to be signed, and q is the order of the group used for the signature scheme. This deterministic version
of Schnorr’s signature scheme is secure.

(c) The security of the Fiat-Shamir transform implies that a sigma protocol with a random challenge and
soundness 1/2 can be directly converted to a NIZK by replacing the challenge message with a hash,
so long as the hash function is modeled as a random oracle.

(d) Recall the SNARG constructed in class from a linear PCP. If the linear PCP has soundness error ε, then
the SNARG also has soundness error ε.

Problem 2: Understanding Interactive Proofs [15 points]. (Problems from “The Foundations of Cryp-
tography - Volume 1, Basic Techniques” by Oded Goldreich)

(a) The role of verifier randomness: Let L be a language with an interactive proof system where the verifier
V is deterministic. Show that L ∈NP.

(b) The role of prover randomness: Let L be a language with an interactive proof system. Show that there
exists an interactive proof system for L for which the prover P is deterministic.
[Hint: Use the fact that P is unbounded.]

(c) The role of errors: Let L be a language with an interactive proof system with perfect soundness, that is
if x ∉ L, the verifier never accepts (not even with negligible probability). Show that L ∈NP.
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Problem 3: Sigma Protocol for Circuit Satisfiability [10 points]. Let circuit-SAT be the language of
satisfiable Boolean circuits1 :

circuit-SAT= {
C : {0,1}n → {0,1} | n ∈N, ∃(x1, . . . , xn) ∈ {0,1}n such that C (x1, . . . , xn) = 1

}
.

Let Commit : {0,1}×R→ C be a perfectly-binding and computationally-hiding commitment scheme with
message space {0,1}, randomness space R, and commitment space C. Suppose that there exist Sigma
protocols 〈PXOR,VXOR〉 and 〈PAND,VAND〉 for languages LXOR and LAND, respectively, where:

LXOR =
{

(c1,c2,c3) ∈ C3
∣∣∣∣ ∃(m1,m2,m3) ∈ {0,1}3, (r1,r2,r3) ∈R3 such that

∀i ∈ {1,2,3} ci =Commit(mi ;ri ) and m1 ⊕m2 = m3

}
LAND =

{
(c1,c2,c3) ∈ C3

∣∣∣∣ ∃(m1,m2,m3) ∈ {0,1}3, (r1,r2,r3) ∈R3 such that
∀i ∈ {1,2,3} ci =Commit(mi ;ri ) and m1 ∧m2 = m3

}
.

Give a Sigma protocol for circuit-SAT. In addition to describing a protocol, you will also need to show
that your protocol satisfies completeness, soundness, and honest-verifier zero-knowledge. [Hint: When
showing that your protocol is honest-verifier zero-knowledge, you may want to use a hybrid argument.
One of your hybrids might rely on the commitment scheme being computationally hiding, and the other
hybrid might rely on the underlying Sigma protocols being honest-verifier zero-knowledge.]

Problem 4: SNARGs in the Random Oracle Model [12 points]. In this problem, we will show how to
leverage probabilistically-checkable proofs (PCPs) to construct a succinct non-interactive argument
(SNARG) in the random oracle model. We will rely on the following adaptation of the famous PCP
theorem:

Theorem (PCP). Let L be an NP language. There exists two efficient algorithms (P ,V) defined as
follows:

• The prover algorithm P is a deterministic algorithm that takes as input a statement x ∈ {0,1}n , a
witness w ∈ {0,1}h and outputs a bitstring π ∈ {0,1}m , where h,m = poly(n). We refer to π as the
proof string.

• The verifier algorithm Vπ is a randomized algorithm that takes as input a statement x ∈ {0,1}n and
has oracle access to a proof string π ∈ {0,1}m . The verifier reads O(1) bits of π. The verifier chooses
the bits it reads nonadaptively (i.e., they can depend on the statement x, but not on the values of
any bit in π).

Moreover, (P ,V) satisfy the following properties:

• Completeness: For all x ∈L, if w is a valid witness for x, then

Pr[Vπ(x) = 1: π←P(x, w)] = 1.

• Soundness: If x ∉L, then for all π ∈ {0,1}m ,

Pr[Vπ(x) = 1] ≤ 1/2.

1You can assume without loss of generality that a Boolean circuit consists of only XOR and AND gates.



(a) Let λ be a security parameter and let H : {0,1}∗ → {0,1}λ be a collision-resistant hash function. Use H
to construct a commitment scheme (Commit,Open,Verify) with the following properties:

• Commit(x) → c: The commitment algorithm should take a message x ∈ {0,1}m and output a
commitment c ∈ {0,1}λ.

• Open(x,c, i ) → σ: The open algorithm takes a message x ∈ {0,1}m , a commitment c ∈ {0,1}λ,
and an index i ∈ [m], and outputs an opening σ.

• Verify(c, i ,b,σ) → {0,1}: The verification algorithm takes a commitment c ∈ {0,1}λ, an index
i ∈ [m], a value b ∈ {0,1}, and an opening σ, and outputs a bit.

Show that your commitment scheme satisfies the following properties:

• Completeness: For all x ∈ {0,1}m and i ∈ [m],

Pr[Verify(c, i , xi ,σ) = 1: c ←Commit(x);σ←Open(x,c, i )] = 1.

• Binding: For all efficient adversaries A, if we set (c, i , (b,σ), (b′,σ′)) ←A(1λ), then

Pr[b 6= b′ and Verify(c, i ,b,σ) = 1 =Verify(c, i ,b′,σ′)] = negl(λ).

• Succinctness: The commitment c output by Commit and opening σ output by Open satisfy
|c| =O(λ) and |σ| =O(λ logm).

In other words, the commitment scheme (Commit,Open,Verify) allows a user to succinctly commit
to a long bitstring and then selectively open up a single bit of the committed string. (In this question,
we do not require any hiding properties from the commitment scheme.)

(b) Let L be an NP language (with statements of length n). Show how to construct a 3-round succinct
argument system for L using your commitment scheme from Part (a). Specifically, your argument
system should satisfy perfect completeness, have soundness error negl(λ) against computationally-
bounded provers, and the total communication complexity between the prover and the verifier
should be poly(λ, logn). In particular, the communication complexity scales polylogarithmically
with the length of the NP statement. [Hint: Use the PCP theorem.]

(c) Explain how to convert your succinct argument from Part (b) into a SNARG in the random oracle
model.
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