Recap: zero-knowledge proofs

Language $L \subset \{0,1\}^*$

P(x) $\overset{\rightarrow}{\longrightarrow}$ V(x)

$\overset{\leftarrow}{\rightarrow}$

$\overset{\downarrow}{\rightarrow}$ accept/reject

1. Completeness: $\forall x \in L \quad \Pr[\langle P, V \rangle(x) = \text{accept}] \geq 1 - \epsilon$

2. Soundness: $\forall x \notin L \quad \forall P^* \quad \Pr[\langle P^*, V \rangle(x) = \text{accept}] \leq \delta$

3. Zero Knowledge: $\forall \text{PPT} \forall \text{PPT Sim} \quad \forall x \in L$

$\left\{ \text{View}_{V^*}[\langle P, V^* \rangle(x)] \right\} \approx_c \left\{ \text{Sim}(x) \right\}$

Theorem: $\exists \text{OWF} \Rightarrow \text{NP} \subset \text{ZK}$

Proof: We saw a ZK proof for HAMCYCLE.
Applications of ZK:

(1) Identification protocols (§ signatures)
 ex: prove to server you know "password" next lecture
 without revealing it.

(2) Enforce honest behaviour in protocols

schematically:

\[P_1 \rightarrow P_2 \leftarrow P_3 \]

\(\uparrow \)

wants to prove that messages sent follow protocol \(\rightarrow \) without disclosing secrets

\(\Rightarrow \)

We will talk about MPC in 2 weeks.
Proof of Knowledge:

Soundness property assures verifier that some NP statement is true.
Sometimes we want a stronger guarantee: that the prover "knows" a witness to the statement.
Each NP language L has associated relation R s.t. $x \in L \iff \exists w \text{ s.t. } (x, w) \in R$

Example: L - all hamiltonian graphs
$R = \{(G, \text{ ham. path in } G)\}$

Soundness - if V accepts x w.h.p $\Rightarrow x \in L$

Proof-of-Knowledge - if V accepts x w.h.p
\Rightarrow Prover "knows" w

These are not equivalent: example:
$R = \{ (N, p) : p | N, p \neq 1, N \}$
How can we prove that P must know w?

(- Cannot look for w in the code of P)

- Can EXTRACT w by (cleverly) running P

Defn: \(\langle P, V \rangle \) is a Pok for R if \(\exists \text{PPT } E \) (called an “extractor”) s.t. \(\forall x \forall P^* \)

\[
Pr[(x,w) \in R : w \leftarrow E^P(x)] \geq Pr[\langle P^*, V \rangle(x)=1] - \kappa
\]

\(E \) can run \(P^* \)

\(\kappa \) knowledge error
Schnorr's Protocol

Fix G cyclic group of order q, g generator. P is given $x \in \mathbb{Z}_q$, $h = g^x$. V is given h. P wants to convince verifier it knows $x \in \mathbb{Z}_q$ s.t. $g^x = h$.

$$L = \{ h \in G \mid \exists x \in \mathbb{Z}_q : h = g^x \}$$

$$R = \{ (h, x) \mid h \in G, x \in \mathbb{Z}_q \text{ s.t } h = g^x \}$$

Since every group element is in L, proving that $h \in L$ is trivial. That's why it only makes sense to talk about a proof of knowledge for R.

$$P(x \in \mathbb{Z}_q, h = g^x \in G)$$

$$r \leftarrow \mathbb{Z}_q$$

$$u = g^r$$

$$c \leftarrow \mathbb{Z}_q$$

$$z = r + cx$$

Check

$$g^z = u \cdot h^c$$

$V(heG)$
Claim: Schnorr's protocol is a ZKPoK of DLOG.

Proof: (1) Completeness: \(u \cdot h^c = g^r (g^x)^c = g^{r + xc} = g^z \).

(2) Honest-verifier zero knowledge:
We construct a simulator \(S \).

\[
S(h):
\begin{align*}
& z \in Z_q, \ c \in Z_q \\
& u \leftarrow g^2/c \\
& \text{output } (u, c, z)
\end{align*}
\]

The basic idea:
- \(S \) runs the protocol "in reverse," which allows it to forge transcript w/o knowing \(x \).

\[
\frac{1}{q^2} : u = g^2/c
\]

\[
\Pr\left[S(h) = (u, c, z)\right] = \Pr\left[\text{View}_v \langle P, V \rangle(h) \ni (u, c, z)\right] = \begin{cases}
0 & : \text{w. o.}
\end{cases}
\]

Why is this only HV ZK? a malicious verifier doesn't have to choose at random.

We will discuss malicious-verifier ZK later.
(3) Proof of Knowledge

Suppose P^* is a (possibly malicious) prover that convinces honest verifier w.p. ε. And for the sake of simplicity, suppose $\varepsilon = 1$ (See Boneh-Shoup 19.1 for general case.)

Let E be the following extractor:

1. Run P^* to obtain initial message u
2. Send a random challenge $c_1 \in \mathbb{Z}_q$, get back z_1
3. Rewind the prover to its state after the 1st message.
4. Send it another random challenge $c_2 \in \mathbb{Z}_q$, get z_2
5. Output $x = \frac{z_2 - z_1}{c_2 - c_1} \in \mathbb{Z}_q$

Analysis: since P^* succeeds w.p. 1, we know that

$$g^{z_1} = u \cdot h^{c_1} \quad g^{z_2} = u \cdot h^{c_2}$$

Therefore:

$$\frac{g^{z_1}}{h^{c_1}} = \frac{g^{z_2}}{h^{c_2}} \Rightarrow g^{z_1 - xc_1} = g^{z_2 - xc_2} \Rightarrow x = \frac{z_2 - z_1}{c_2 - c_1}.$$
Digest:
It might seem that Pok and ZK are perhaps contradictory: if E can learn w from P why can't the verifier V?

Answer: E and V interact with P* in very different ways. Specifically, E has much more power than V:
- V must interact with P in "live protocol"
- E can rewind P*.

HVZK \Rightarrow ZK

Problem: V can choose c not uniformly random.

Strawman: Run P to get first msg U.
- Feed U to V to get C
- Run Sim to get (U', C, z) (probably u'\neq u)

Problem: c can depend on u. So (U', C, z) doesn't look like real transcript.

Solution: V first commits to c, then V can't change c depending on u.
Sigma protocols

A more general view of Schnorr's protocol:

\[P((x, w) \in R) \quad V(x) \]

\[\begin{align*}
 t \quad & \text{("commitment")} \\
 c \quad & \text{("challenge")} \\
 z \quad & \text{("response")} \\
\end{align*} \]

\[c \leftarrow \$ \quad C \]

Challenge is chosen uniformly at random.

Outputs accept/reject as a deter. function of

\[(x, t, c, z) \]

Requirements

(1) Completeness (perfect)

(2) Special soundness: there exist an eff. extractor \(E \) that given two accepting transcripts \((t, c, z), (t, c', z') \) s.t. \(c \neq c' \), outputs \(w \) s.t. \((x, w) \in R \)

\(\Rightarrow \) can show Sp. Soundness \(\Rightarrow \) PoK with \(R = \frac{1}{\sqrt{C}} \).
(3) Special Honest Verifier ZK:

There exists an efficient Sim that takes as input \((x, c)\) and s.t:

1) Sim\((x, c)\) outputs \(t, z\) s.t \((t, c, z)\) is an accepting transcript for \(x\).

2) For all \((x, w) \in R\)

\[
\{ (t, c, z) : \exists c \in C \text{ s.t. } (t, z) \leftarrow \text{Sim}(x, c) \} \equiv \{ \text{View}_V(P(x, w) \leftrightarrow V(x)) \} \]

identically distributed

Why Sigma Protocols are interesting?

- Efficient ZK proofs for many interesting languages. (about commitments, encryptions, ...)
- Can build efficient identification protocols & signature schemes. → Next lecture
Composition of Σ-protocols

Given Σ-protocol for $R = \{(x, w)\}$ want to construct Σ-protocols for.

- Proving AND of statements

$$R_{\text{AND}} = \left\{ \left\langle (x_0, x_1), (w_0, w_1) \right\rangle : (x_0, w_0) \in R \land (x_1, w_1) \in R \right\}$$

\Rightarrow just run protocols in parallel (can even use same challenge)

- Proving OR of statements

$$R_{\text{OR}} = \left\{ \left\langle (x_0, x_1), (b, w) \right\rangle : (x_b, w) \in R \right\}$$

This is much trickier. Basic idea: Verifier sends challenge $C \in \{0, 1\}^n$. Prover can choose c_0, c_1 s.t. $c_0 \oplus c_1 = C$ and then create one real proof and one simulated proof. Verifier doesn't know which is which.
Suppose \(b=0 \) (i.e. prover knows witness to \(R \))

\[
P_{OR}(x_0, x_1), (b, \omega) \quad \frac{\text{Suppose } b=0 \text{ (i.e. prover knows witness to } R)}{V_{OR}(x_0, x_1)}
\]

\[C_1 \leftarrow C\]

Run \(\text{Sim}_1 \) for \(R_1 \) to get

\[(t_1, c_1, z_1) \text{ valid transcript}\]

\[t_0 \leftarrow P(x_0, \omega)\]

\[\frac{t_0, t_1}{t_0, t_1} \xrightarrow{} c \leftarrow C\]

\[c_0 \leftarrow C \oplus C_1\]

Send \(c_0 \) to \(P \)

to get response \(z_0 \)

\[c_0, z_0, z_1 \xrightarrow{} \text{check } (x_0, t_0, c_0, z_0)\]

\[(x_1, t_1, C \oplus C_0, z_1)\]
(1) Completeness - immediate

(2) SHVZK - we construct Sim or: choose \(c \leftarrow \mathbb{Z}_q \), \(c_0 \leftarrow \mathbb{Z}_q \), set \(c_1 \leftarrow c_0 \oplus c \)

We can now use Sim for R to compute:

\[
(t_0, z_0) \leftarrow \text{Sim}(x_0, c_0) \\
(t_1, z_1) \leftarrow \text{Sim}(x_1, c_1)
\]

Output \(((t_0, t_1), (z_0, z_1))\)

(3) Special Soundness

Given \((x_0, x_1)\) & two transcripts

\[
((t_0, t_1), c, (c_0, z_0, z_1)) \quad \& \quad ((t_0, t_1), c_1, (c_0', z_0', z_1'))
\]

s.t. \(c \neq c_1 \)
Define $C_1 = C \oplus C_0$, $C'_1 = C' \oplus C_0$

Then either $C'_0 \neq C_0$ or $C'_1 \neq C_1$
(since $C \neq C'$)

Suppose w.l.o.g. $C'_0 \neq C_0$

Then can use extractor for R to extract w_0 from

$w_0 \leftarrow \text{Ext}(x_0, (t_0, C_0, z_0), (t_0, C'_0, z'_0))$

and then output witness

$(0, w_0)$ for R_{OR}.