
CS 355: Topics in Cryptography Spring 2021

Problem Set 4

Due: May 24, 2021 at 11:59pm

Instructions: You must typeset your solution in LaTeX using the provided template:

https://crypto.stanford.edu/cs355/21sp/homework.tex

Submission Instructions: You must submit your problem set via Gradescope. Note that Gradescope
requires that the solution to each problem starts on a new page.

Bugs: We make mistakes! If it looks like there might be a mistake in the statement of a problem, please
ask a clarifying question on Piazza.

Problem 1: Conceptual Questions [8 points].

(a) Securely computing a function f : {0,1}n×{0,1}m → {0,1} using Yao’s protocol (as described in lecture),
requires the two parties to exchange at most O(n +m) bits in the worst case.

(b) There exists a linear polynomial over Z6 that intersects with each of the points (0,0), (2,1) ∈Z2
6.

(c) You and your friends want to determine which one of you has the lowest salary. You design and
run a protocol, at the end of which all your friends learn that their Big 4 salariesTM are higher than
yours. This blatant invasion of your privacy could have been avoided if you had used a proper
maliciously-secure MPC protocol.

(d) Consider a hash function H : X →Y , and the NP-relation Rn for knowledge of n pre-images of H .
Formally, Rn has inputs space Yn , witness space X n , and is defined by {(w ∈X n , y ∈Yn) : (H(w1) =
y1)∧ (H(w2) = y2)∧·· ·∧ (H(wn) = yn)}. A SNARG for Rn must have o(n) verification time.

Problem 2: Verifiable Secret Sharing [10 points]. Consider a dealer who wants to share a secret α
between n shareholders using a t-out-of-n secret-sharing scheme where t < n. The shareholders suspect
that the dealer secretly holds a grudge against one of them and has given that person an invalid share,
inconsistent with the rest of the shares (i.e., the dealer runs (s1, . . . , sn) ← G(n, t ,α), gives s′j 6= s j to
shareholder j and si to shareholder i 6= j .) In this problem, we assume that all shareholders are honest.

(a) Show that if they are willing to reveal all their shares, the shareholders can detect if one of them has
indeed been given an invalid share.

We would like the shareholders to be able to detect an invalid share without having to reveal their
shares. To do this, consider the following modification to Shamir’s secret-sharing scheme:

https://crypto.stanford.edu/cs355/21sp/homework.tex
https://www.gradescope.com/courses/84284

Let G be a cyclic group of prime order q > n, and let g ,h each be a generator of G.

1. The dealer chooses β, a1,b1, . . . , at−1,bt−1 ←R Zq and constructs the polynomials A(x) = α+
a1x +a2x2 +·· ·+at−1x t−1 and B(x) =β+b1x +b2x2 +·· ·+bt−1x t−1 over Zq .

2. The dealer creates t Pedersen commitments c0,c1, . . . ,ct−1 ∈ G where co = Commit(α;β) =
gαhβ and c j = Commit(a j ;b j) = g a j hb j for j ∈ [t −1]. The dealer publicly broadcasts all the
commitments to all the shareholders.

3. The dealer creates n shares {(i , si ,ri)}n
i=1, where si = A(i) and ri = B(i) are computed over Zq .

The dealer privately sends each of the n shareholders her own share.

(b) Describe a verification routine that allows the shareholders to jointly verify that all the shares given
to them are valid without having to reveal them.

(c) Prove that the protocol preserves the secrecy of the secret α against any coalition of fewer than t
shareholders. [Hint: Specify the view of any coalition of t −1 shareholders and then prove this view
is distributed independently of the secret α.]

(d) Extra Credit [5 points]. Prove that if a dealer can trick the shareholders into accepting an invalid set
of shares it can solve the disrete log of h with respect to g .

Problem 3: Generating Beaver Multiplication Triples [15 points]. Recall from lecture that Beaver mul-
tiplication triples enable general multiparty computation on secret-shared data. In this problem, we will
explore two methods that can be used to generate Beaver multiplication triples. For simplicity, we will just
consider the two-party setting and we will generate Beaver multiplication triples over the binary field Z2

(where addition corresponds to xor). To be precise, we first describe an “idealized process” for generating
a single multiplication triple. In this “idealized process”, a trusted party generates the triple and then
distributes the shares of the triple to the two parties Alice and Bob.

1. The trusted party chooses a,b ←R Z2 and computes c = ab ∈Z2.

2. The trusted party distributes a 2-out-of-2 secret sharing of a, b, and c to Alice and Bob. Specifically,
the trusted party samples ra ,rb ,rc ←R Z2 and gives ra ,rb ,rc to Alice. The trusted party then computes
sa = a ⊕ ra , sb = b ⊕ rb , and sc = c ⊕ rc , and gives sa , sb , sc to Bob.

By construction [a] = (ra , sa) is an additive secret-sharing of a, [b] = (rb , sb) is an additive secret-sharing
of b, and [c] = (rc , sc) is an additive secret-sharing of c. Moreover, c = ab, so ([a], [b], [c]) is a valid Beaver
multiplication triple.

We will show how Alice and Bob can generate these Beaver triples without relying on a trusted party.
Throughout this problem, you may assume that Alice and Bob are “honest-but-curious” (namely, they
follow the protocol exactly as described, but may try to infer additional information from the protocol
transcript—this is the model that we considered in lecture).

(a) Show how Alice and Bob can generate a Beaver multiplication triple using Yao’s protocol.1 Your
construction should not make any modifications to the internal details of Yao’s protocol (in fact, any
secure two-party computation protocol can be used here). Then, give an informal argument why
your protocol is correct and secure. [Hint: To apply Yao’s protocol, you will need to come up with a
two-party functionality f that Alice and Bob will jointly compute. Try letting Alice’s inputs to f be
her shares (ra ,rb ,rc), which she samples uniformly at random at the beginning of the protocol.]

(b) Show how Alice and Bob can use a single invocation of an 1-out-of-4 oblivious transfer (OT) protocol
(on 1-bit messages) to generate a Beaver multiplication triple. Give an informal argument why
your protocol is correct and secure. (In a 1-out-of-n OT, the sender has n messages m1, . . . ,mn ,
while the receiver has a single index i ∈ [n]. At the end of the protocol execution, the sender learns
nothing while the receiver learns mi (and nothing else). The formal definitions of sender and receiver
privacy are the analogs of those presented in lecture.) [Hint: Try using OT to directly evaluate the
functionality f you constructed from Part (a).]

(c) Let ` ∈N be a constant. Show how to build a 1-out-of-2` OT protocol (on 1-bit messages) using `
invocations of an 1-out-of-2 OT protocol (on λ-bit messages) together with a PRF F : {0,1}λ×{0,1}`→
{0,1}. Here, {0,1}λ is the key-space of the PRF and {0,1}` is the domain of the PRF. Then, give an
informal argument for why your protocol satisfies correctness, sender privacy, and receiver privacy.
[Hint: Start by having the sender sample 2` independent PRF keys. The sender will use these keys to
blind each of its messages m1, . . . ,m2` .]

Problem 4: Compiling to R1CS [10 pts]. The SNARG discussed in class (“Marlin-Lite”) operates on
relations expressed as rank-1 constraint systems (R1CSs). Recall that an R1CS instance comprises a set
of variables, {z1, . . . zn} in a finite field F, and constraints of the form

(
a0 +∑n

i=1 ai zi
)(

b0 +∑n
i=1 bi zi

) =
c0 +∑n

i=1 ci zi where ai ,bi ,ci are constants. Thus, each constraint requires the product of two linear
combinations of variables to equal a third linear combination.

To express relations defined in terms of booleans or fixed-width integers (like in the C programming
language), these objects must be encoded as field elements, and operations over them must be expressed
as rank-1 constraints. In this problem, we’ll consider booleans encoded as 0 ∈ F (false) or 1 ∈ F (true). For a
field element x which is bit-valued (zero or one), let bool(x) denote the corresponding boolean.

In each part you’re given some inputs, assumptions that you can make about those inputs, and desired
outputs. You should write the rank-1 constraints necessary to ensure that the outputs have the desired
property, given the assumptions about the inputs. You may introduce new witness variables if needed.

Unless otherwise noted, each part requires only one or two constraints (you may use more if you
wish). [Extra Credit (1pt)] If you use (what we believe to be) the minimal number of constraints in parts
(a) through (j), you’ll get 1 point of extra credit.

You can write your constraints without writing the a,b,c vectors explicitly. That is, (x −5y)x = z is an
acceptable way of writing a constraint over variables x, y, z.

(a) FORCE-BIT: Given x ∈ F, ensure it is bit-valued (there is no output). This can be done with one
constraint.

(b) NOT: Given bit-valued x ∈ F, ensure r ∈ F is bit-valued and bool(r) =¬bool(x). This can be done with
one constraint.

1You may use the variant of Yao’s protocol where only one party receives output (and the other party learns nothing).

(c) AND: Given bit-valued x, y ∈ F, ensure r ∈ F is bit-valued and bool(r) = (bool(x)∧bool(y)). This can
be done with one constraint.

(d) OR: Given bit-valued x, y ∈ F, ensure r ∈ F is bit-valued and bool(r) = (bool(x)∨bool(y)). This can be
done with one constraint.

(e) XOR: Given bit-valued x, y ∈ F, ensure r ∈ F is bit-valued and bool(r) = (bool(x)⊕bool(y)). This can
be done with one constraint.

(f) BIT-EQUAL: Given bit-valued x, y ∈ F, ensure r ∈ F is bit-valued and bool(r) = (bool(x) ⇐⇒ bool(y)).
This can be done with one constraint.

(g) FORCE-NON-ZERO: Given x ∈ F, ensure that is it non-zero (there is no output). Briefly explain why
your constraints provide this guarantee. This can be done with one constraint.

Hint: what value can the prover provide that only exists for non-zero elements? Write a constraint to
check the correctness of this value.

(h) IS-ZERO: Given x ∈ F ensure r ∈ F is bit-valued and bool(r) is true iff x is zero. Briefly explain why
your constraints provide this guarantee. This can be done with two constraints.

(i) EQUAL: Given x, y ∈ F, ensure r ∈ F is bit-valued and bool(r) is true iff x = y . Briefly explain why your
constraints provide this guarantee. This can be done with two constraints.

(j) n-ary-AND Given bit-values x1, . . . , xn ∈ F, ensure r ∈ F is bit-valued and bool(r) = (bool(x1)∧·· ·∧
bool(xn)). Briefly explain why your constraints provide this guarantee. This can be done with two
constraints.

You may assume that n ¿|F|, and you may use only O(1) constraints.

(k) [Extra Credit (2pts.)] n-ary-XOR Given bit-values x1, . . . , xn ∈ F, ensure r ∈ F is bit-valued and
bool(r) = bool(x1)⊕·· ·⊕bool(xn). Briefly explain why your constraints provide this guarantee.

You may assume that n ¿|F|, and you may use only O(logn) constraints.

Problem 5: Time Spent [3 points for answering]. How long did you spend on this problem set? This is
for calibration purposes, and the response you provide will not affect your score.

Optional Feedback [0 points]. Please answer the following questions to help us design future problem
sets. You do not need to answer these questions, and if you would prefer to answer anonymously, please
use this form. However, we do encourage you to provide us feedback on how to improve the course
experience.

(a) What was your favorite problem on this problem set? Why?

(b) What was your least favorite problem on this problem set? Why?

(c) Do you have any other feedback for this problem set?

(d) Do you have any other feedback on the course so far?

https://stanforduniversity.qualtrics.com/jfe/form/SV_6XTKIK2cWZyqpRr

	Problem 1: Conceptual Questions [8 points].
	Problem 2: Verifiable Secret Sharing [10 points].
	Problem 3: Generating Beaver Multiplication Triples [15 points].
	Problem 4: Compiling to R1CS [10 pts].
	Problem 5: Time Spent [3 points for answering].
	Optional Feedback [0 points].

