
CS 355: Topics in Cryptography Spring 2021

Problem Set 5

Due: June 4, 2021 at 11:59pm

Instructions: You must typeset your solution in LaTeX using the provided template:

https://crypto.stanford.edu/cs355/21sp/homework.tex

Submission Instructions: You must submit your problem set via Gradescope. Note that Gradescope
requires that the solution to each problem starts on a new page.

Bugs: We make mistakes! If it looks like there might be a mistake in the statement of a problem, please
ask a clarifying question on Piazza.
Limited Late Days: You may only use one late day on this assignment. This limitation is necessary to give
us time to grade the assignment before the final grade deadline for the quarter.

Problem 1: Local Differential Privacy [10 points]. The differential-privacy model we saw in class, where
a trusted curator aggregates all the data and then randomizes responses to queries, is also called the
central model of differential privacy.

In the local model of differential privacy, the users do not want to trust the aggregator, so they each
randomize their own data locally, before sending it to the aggregator. We’ll look at a very simple local DP
algorithm called Randomized Response (RR), which was proposed by Warner in 1965, four decades before
differential privacy was invented! The goal of RR is to collect sensitive statistics (e.g., “how many people
do drugs”) while allowing each individual participant in the survey some amount of deniability.

Formally, each of the n users holds a private bit bi ∈ {0,1}. The quantity we are interested in estimating
is a := 1

n

∑n
i=1 bi . Consider the following RR mechanism, that is run independently by each user:

- Flip two unbiased coins.

- If the first coin is heads, send bi to the aggregator.

- Otherwise, look at the second coin:

- If heads, send 0 to the aggregator.

- If tails, send 1 to the aggregator.

(a) Show that RR guarantees ε-differential privacy for ε= ln(3) for each individual user’s bit.

(b) Let b̂i be the i -th user’s randomized response. Show that the untrusted aggregator that receives all
these noisy bits can compute an unbiased estimate â of a (i.e., E[â] = a).

(c) Show that the estimation error â −a has standard deviation O(1/
p

n).

(d) How much worse is this than what we can achieve in the central model? Suppose all users send their
bits bi to a trusted curator that uses the Laplace mechanism to output a noisy estimate âc of a that is
ln(3)-differentially private. Show that the estimation error âc −a has standard deviation O(1/n).

https://crypto.stanford.edu/cs355/21sp/homework.tex
https://www.gradescope.com/courses/84284


Problem 2: Private Information Retrieval [15 points]. Throughout this question, we consider one-
round information-theoretic PIR over an n-bit database.

In class, we saw a simple two-server PIR with O(n1/2) communication complexity. In this problem,
you will first construct a four-server PIR scheme with communication complexity O(n1/3). Then you will
construct a two-server PIR with much improved O(n1/3) communication complexity. As we mentioned in
lecture, this O(n1/3) scheme was essentially the best-known two-server PIR scheme for many many years,
so in this problem you will reprove a very nice and very non-trivial result.

(a) In the following box, we describe a four-server PIR scheme with O(
p

n) communication. Prove that
the scheme is correct. Explain informally in 2-3 sentences why the scheme is secure as long as the
adversary controls at most one server.
(Hint: Using matrix notation will make your life easy. The correctness argument should not require
more than a few lines of math.)

Four-Server O(
p

n)-Communication PIR Scheme

Write the n-bit database as a matrix X ∈ Z
p

n×pn
2 . The client wants to read the bit Xi j from this

database, where i , j ∈ [
p

n]. Recall that ei ∈Z
p

n
2 is the dimension-

p
n vector that is zero everywhere

except with a “1” at position i .

• Query(i , j ) → (q00, q01, q10, q11).

Sample random vectors r0,r1, s0, s1 ∈Z
p

n
2 subject to r0 + r1 = ei ∈Z

p
n

2 and s0 + s1 = e j ∈Z
p

n
2 .

For b0,b1 ∈ {0,1}, let qb0b1 ← (rb0 , sb1 ).
Output (q00, q01, q10, q11).

• Answer(X , q) → a.

Parse the query q as a pair (r, s) with r, s ∈Z
p

n×1
2 .

Return as the answer the single bit a ← r T X s ∈Z2.

• Reconstruct(a00, a01, a10, a11) → Xi j .
Output Xi j ← a00 +a01 +a10 +a11 ∈Z2.

(b) Say that you have a k-server PIR scheme that requires the client to upload U (n) bits to each server
and download one bit from each server. Explain how to use this scheme to construct a k-server PIR
scheme in which, for any ` ∈N, each client uploads U (n/`) bits to each server and downloads ` bits
from each server. (You may assume that n is a multiple of `.)

Sketch—without a formal proof—why your construction does not break the correctness or security
of the initial PIR scheme.

(c) Show how to combine parts (a) and (b) get a four-server PIR scheme with total communication
O(n1/3). In particular, you should calculate the optimal value of the parameter ` used in part (b).

(d) Sketch how to generalize the PIR scheme in part (a) to give an eight-server PIR scheme in which
the client sends O(n1/3) bits to each server and receives a single bit from each server in return. This
should only take a few sentences to describe.



(e) Now comes the grand finale! Use the eight-server scheme from part (d) to construct a two-server
scheme with communication O(n1/3).

Hints:

• Label the queries of the eight-server scheme from part-(d) as q000, q001, q010, . . . , q111. The two
queries in your new two-server scheme should be q000 and q111 from the eight-server scheme.

• The two servers can clearly send back the 1-bit answers for q000 and q111 respectively. NOW,
here is the beautiful idea: show that by sending back to the client O(n1/3) additional bits, each
of the two servers can enable the client to recover the answers for three additional queries.

Problem 3: Key-Exchange from LWE [10 points]. In this problem, we will formalize the concept of a
non-interactive key exchange (NIKE) protocol, and then construct it from LWE. NIKE protocols are a core
component of Internet protocols like TLS, and the lattice-based NIKE that we develop in this problem
is a simplified variant of some of the leading candidates in the NIST competition for standardizing
post-quantum key-exchange.



A non-interactive key exchange (NIKE) protocol for a key space K consists of the following PPT
algorithms:

• Setup
(
1λ

) → pp: On input the security parameter λ, the setup algorithm outputs the public
parameters pp.

• ClientPublish
(
pp

)→ (priv,pub): On input the public parameters pp, the client-publish algorithm
outputs a secret value priv, and a public message pub.

• ServerPublish
(
pp

) → (priv,pub): On input the public parameters pp, the server-publish algo-
rithm outputs a secret value priv, and a public message pub.

• KeyGen
(
priv,pub

) → key: On input a secret value priv, and a public message pub, the key
generation algorithm outputs a key key ∈K.

Correctness. We require that for all pp← Setup(1λ), (pub0,priv0) ←ClientPublish(pp), (pub1,priv1) ←
ServerPublish(pp), we have

Pr
[
KeyGen

(
priv0,pub1

)=KeyGen
(
priv1,pub0

)]= 1−negl(λ).

Security. For a NIKE protocol (Setup,ClientPublish,ServerPublish,KeyGen), we define the following
two experiments:

Experiment b (b = 0,1):

• The challenger computes the following:

pp← Setup(1λ),
(priv0,pub0) ←ClientPublish(pp),
(priv1,pub1) ← ServerPublish(pp),
key0 ←KeyGen

(
priv0,pub1

)
,

key1 ←R K.

It provides (pp,pub0,pub1,keyb) to the adversary.

• The adversary outputs a bit b̂ ∈ {0,1}.

Let Wb be the event that A outputs 1 in Experiment b. Then, we say that a NIKE protocol is
secure if ∣∣∣Pr[W0]−Pr[W1]

∣∣∣= negl(λ).



(a) Explain in words why the security definition above captures our intuitive notion of security for
key-exchange.

(b) Consider the following NIKE protocol:1

Let n = poly(λ), q,χB be parameters for which LWEHNF(n,n, q,χB ) and LWEHNF(n,n+1, q,χB ) is hard.
Recall from lecture that in practice, for λ= 128, we use n ≈ 800.

Define the key space K= {0,1} and consider the following algorithms.

• Setup
(
1λ

)→ pp: Sample a matrix A ←R Zn×n
q and set pp= A.

• ClientPublish
(
pp

) → (priv,pub): Sample vectors s ← χn
B , e ← χn

B . Then, set priv = s, and pub=
AT s+e.

• ServerPublish
(
pp

)→ (priv,pub): Sample vectors s ← χn
B , e ← χn

B . Then, set priv = s, and pub=
As+e.

• KeyGen
(
priv,pub

)→ key: Let priv= s ∈Zn
q and pub= b ∈Zn

q . The key generation algorithm first
samples a small noise term e ← χB . Then, if ‖〈s,b〉+e‖∞ ≤ ⌊

q/4
⌉

, set key = 0. Otherwise, set
key= 1.

Suppose that q is prime and chosen to satisfy 4nB 2/q = negl(λ). Prove that the protocol satisfies
correctness. For the proof, feel free to use the following fact (you do not need to prove this fact):

For any prime q , for A ←R Zn×n
q any two non-zero vectors s0,s1 ∈Zn

q , and c ∈Zq ,

Pr
A←Zn×n

q

[
sT

0 As1 = c
]= 1/q −negl(λ),

where the probability is over the random choice of A.

(c) Prove that the protocol above is secure assuming LWEHNF(n,n, q,χB ) and LWEHNF(n,n +1, q,χB ).
The definition of LWEHNF is on the last page of this problem set. [Hint: Use a hybrid argument.]

Problem 4: Time Spent [3 points for answering]. How long did you spend on this problem set? This is
for calibration purposes, and the response you provide will not affect your score.

Optional Feedback [0 points]. Please answer the following questions to help us design future problem
sets. You do not need to answer these questions, and if you would prefer to answer anonymously, please
use this form. However, we do encourage you to provide us feedback on how to improve the course
experience.

(a) What was your favorite problem on this problem set? Why?

1We restrict the key space to K = {0,1} for simplicity. To get a NIKE protocol for K = {0,1}128, we can simply run 128 parallel
instances of the protocol using the same public matrix A.

https://stanforduniversity.qualtrics.com/jfe/form/SV_6XTKIK2cWZyqpRr


(b) What was your least favorite problem on this problem set? Why?

(c) Do you have any other feedback for this problem set?

(d) Do you have any other feedback on the course?

Appendix: Definition of LWE in Hermite Normal Form.

We review the formal definitions of the Learning with Errors problem in Hermite Normal Form. Note that
in this variant of the LWE problem, the vector s is sampled from the B-bounded error distribution χB

instead of the uniform distribution. This version of the LWE problem is known to be as hard as the
standard LWE problem.

LWEHNF(n,m, q,χB ): Let n,m, q,B ∈N be positive integers, and let χB be a B-bounded distribution
over Zq . For a given adversary A, we define the following two experiments:

Experiment b (b = 0,1):

• The challenger computes

A ←R Zm×n
q , s ←χn

B , e ←χm
B , b0 ← A ·s+e, b1 ←R Zm

q ,

and gives the tuple (A,bb) to the adversary.

• The adversary outputs a bit b̂ ∈ {0,1}.

Let Wb be the event that A outputs 1 in Experiment b. Then, we define A’s advantage in solving the
LWEHNF problem for the set of parameters n,m, q,χB to be

HNF-LWEAdvn,m,q,χB

[
A

]
:=

∣∣∣Pr[W0]−Pr[W1]
∣∣∣.
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