
Lecture 1 : Intro 31 Basic Primitives

3/30/21

Welcome to CS 355!
Boneh

Instructors : Alex Ozdemir
Riad Wahby Boneh
Saba Eskandwm.am} PhD students with 0am.

Today'sPlae_

Introduction
course overview

Course logistics

Foundationsofcryptogrophyoefin.mgSecurity
One -way functions

low ← basic tool for all of symmetric crypto !
Owfs → PRGs

what is cssss ?

I
.
Your first advanced course in cryptography :

I learn
to use important formalisms and tools

Understand open problems in crypto
-

prepare for doing crypto research

2. Your last advanced course in cryptography :

- understand cutting-edge crypto in use today
← background to read and understand crypto papers
-

prepare you to use crypto to change the world !

Topics

Unit 2 : foundations of Crypto

Unit 2 : cryptanalysis $ Elldiptic Curve cryptography
Unit 5 : Zero knowledge
Unit 14 : Multi-party computation

unit S : Lattice - based crypto
↳ one of the most popular forms of post-quantum crypto !-

Logistics
website : https://cs 355. Stanford.edu (make sure you're on the -202k site !)

9
Look here for coarse policies, Huws, OHS, and links to everything

contact: cs3ss@cs.stanford.edu for individual questions

Piazza for questions about material , problem sets , policies
✓also all announcements

Anonymousfeedback link on website (course staff paged
✓ please send feedback throughout quarter !

Lectures : - lecture recordings on Canvas, but please attend lecture!
- lecture notes posted to website after class
- No textbook

, optional supplemental readings on website
- If interested in learning more, try cryptobook.us

Office hours : - see website (please give feedback if times don't work)l
- Not recorded
- feel free to email us if you want to

talk l-ont

problem sets : - S total
, one every two weeks

- Use Latex
.
Submit via Gradescope

- 2
"
Pset is out today, due Monday, April 12

Note : Cs355 = CS255 t 100
,the HW problems are meant to be challenging .

[
start early
come to OH
-ask questions

Foundations of Modern Cryptography

Modern cryptography is closely connected to the study of hardiness

↳ lots of overlap b/w foundations of crypto and computational complexity

General approach : hard problem → crypto scheme

Security : if crypto scheme broken → hard problem solved

Examples of hard problems from CS25.5 :
- factoring
- discrete logarithm
- OOH

Q : Using fancier and fancier assumptions, we can get more and more

interesting crypto. But where do these assumptions come from? Can we

get closer to building crypto from hard problems we may recognize
from a theory or complexity class, like NP- hard problems? Is there
a minimal assumption we can have a lot of confidence in that's

enough to build some crypto ?

Introducing the basic assumption of modern symmetric crypto:

One - way functions ! LOWE)
Note : In the first couple lectures

,
we will focus on symmetric crypto .

The tools & notions we introduce here will be important
for more advanced concepts .

One - way functions LOWFs)

Intuitively, a OWF is a function that's easy to compute
but hard to invert

.

✓ poly -time

i.e
. given X , easy to compute flx7=y

given y,
hard to compute x sit . flakey
thot poly -time

It turns out that given a function f with this property, we can
build all the symmetric crypto from CS 255 : PRG

,
PRES

,
MPs

,
etc . . .

We'll see how in this lecture and the next.

More formally [inputs
output spaces parameterized by X, often called

the
"

security parameter:
' think of ¥, has {0,13£

m
Def : A function f : X.TK

,
is one -way if for all

"efficient "

algorithms
"

PPT adversaries A :
f-

This would be just
"
ex
"

,

but flirty may have more

m
than one preimage

pixel
,

: All: flxl) e- f-
'

(FLATTIE neg ICHw wit T/ A is given flx) -y, a function f is

for x chosen at random wants to invert it
.

"

negligible
"

in dif

from X
, fly-20 for

all constants eEIN

asim,

#
"

'I's
.

This technicality ensures that a poly-time algorithm At can run in time poly

How to build a OWF ? (do they even really exist? ?)

candidate Owfs :

1) flx.pl = x-y for equal length primes X.y .

2) fix) -g
" there gt -6 , 6 is prime order group

3) Levin's universal OWF :

function fest . FOWWF→ Fe is ①WE

Can we prove OWFS exist without making additional assumptions ?

Probably not. Owfs exist → PFNP

Come to OH and we earn talk about why !

Can we prove Owfs exist assuming only that PENP ?

Major opens problem!

From Owfs to Symmetric crypto

Today ! Thursday !
Plum- Micah

. Felsted networks mac from prfGoldie.- oh - Levin
fgm Luby-Radloff at

MyTy- Eric ther MACAuth
Owfs Grbs PRE PRE- Ene
- - -

by definition countermove switching
lemma

Some notes :

Collision resistant hash functions are missing from this picture.

①Wfs are riot known to imply CRHfs and vice versa
.

Public - key crypto is missing from this picture .
It can be proven, with some caveats

,
that Owfs are

insufficient for public key crypto !

↳ there is an area of crypto that focuses on separations
,

proving that some assumption cannot getyou a desired functionality !

Theory vs Practice:: in practice, we usually directly assume that
AES is a secure PRP and go from there

.

why? The relationships above are very important for our theoretical

Understanding of crypto and its foundations in complexity theory, but
the transformations

,
while "

efficient
" lie

. poly-time! are often not practical.

Also
,
the toolstechniques we develop here will come up again $again

Today we will see how Owfs imply PRGS

Pseudorandom Generators (PRG)

Recall : A PRG takes a short random seeds and expands it
into a longer

" random- looking
"

string Gls) .

← security parameter is length of seed
S SE {0,13

"

G(SJ G (sf e {o, 1391×1
← the

"stretch
"

of the pro

Q : why must it be the case that HH -X ?

Q : what does it mean to be "random - looking
" ?

1)
"

information -theoretic Security
"

: Cold is uniformly random in {0
,

If"

This is impossible!

ppt adversary
2)

"

computational security
"

: No efficient algorithm can distinguish
Gls'd from a truly random string

→Define a "

distinguishing algorithm
"

as one that takes a string

as input and "

guesses
" whether the string is the output of

a PRG or a truly random string .

e.g. algorithm outputs I when it guesses the string is pseudorandom

Formalizing PRGS

Def : A PRG G :{0,13
"
- {0,13

""
is a deterministic

poly -time algorithm .

It is secure it for all PPT
adversaries A :

H Pres E-Eo, 13' :AlasD= I] - PETE Eo, 13
""
:AHS=D)Enegllx)
- -
Probability A outputs 2 given Probability A outputs 2 given
pseudorandom value truly random value

Intuitively, behavior of A should not vary much between
PRG outputs and truly random outputs .
We call the difference between these two probabilities the adversary's
distinguishing advantage PRGAdvEA

,
63
.

A more general view: Computational indistinguishability
Often we'll define probability distributions corresponding to two "worlds

"

:

distribution D. = { see 80,13" : 6473
"

pseudorandom world
"

distribution 0
,

-

- ft E-{0,13
""

: t} "

truly random world
"

We say Do and 0
, are computationally indistinguishable if no PPT

adversary can distinguish draws from Oro from draws from Dp .

This is demoted to Kc O
,

OW f- → PRG
will actually show OWP→ PRG COWWF case is harder)

One way Permutation COUP) : f is a OWP if

I) f is a OWF

2) In EIN : f {0,15→ {0,15 is a permutation

Today : OWWP → PRG with 2-bit stretch

next time we'll extend to arbitrary stretch

Observation : on a random input, output of OWP is also random
↳ let's use that as first n bits of PRG output!

S → fest bad

- -w

n bits n bits I bit

9 Awe want bls) to
uniformlyrandom

"

look random
"

given fils)

New idea : Hard core bits (AHA hard core predicated

Given HH for a OWE
, finding X is hard

.

Q : what about finding the first bit of X ?
A : Not necessarily ! E.g . fth , . . - ,Xn) = X, ,

f
'

(Xa
, Xn)

But it cannot be the case that all x. .
. -Fn are easy to compute,

or else f isn't a OWF!

Def : A hard core bit b for a OWF f is a bit s.io .

1) blx) can be computed in poly time

2) Any PPT adv A given HH can only guess to
ywith probability at most ktmegll.mil

blxl looks random!

If we have a hard-core bit blx) for a OWP f
,
we can

build our PRG 6 as 669 -- fess 11661.

But how do we get a hard core bit?

Then l Goldreich -Levin) : Every Owf has a hardcore bit !

idea: a random linear combination of the bits should be hard to compute.

first extend the function f to gtx,D= lflxl, r) where HHxl
9
n bits

observe that g is still one -way

Now blx
,
if =LX, r> = ÷

,

Xi - ri mod2 ← dinner product mod2

See Supplemental reading on web site for details 1proof !

