CS355 Lecture \#12:
SNARGs from
polynomial commitiments \& Interactive Oracle Proofs (IOPs)

Last time

- SNARGs fram Pces
- polynomial commitments:

Protocl letween P\& \& :
$\operatorname{Setup}(d) \rightarrow p p \leftarrow \underset{p}{\text { publicoweri }}$
degree bound
Commit $(p p, f) \rightarrow c \longleftarrow \overbrace{t o n}^{\text {comi }}$
$1 t_{0} f(\cdot)$

$$
\operatorname{Open}(p p, f, x) \rightarrow \pi
$$

$\operatorname{chech}(p p, c, x, y, \pi) \rightarrow\left\{T_{\text {ree }}\right.$, Falk $\}$
For today: $|\pi| \in O(\log d)$

$$
|c| \in O(1)^{0}
$$

Today:
(1) Arithmetic circuits \& constraints
(2) From polynomial commitments t SNAREs via Interactive orate Proofs
(3) Fun with polynomials:

- padnomial equality testing
- proving a polynomial vanishes on a subgroup of If
- "univariate sum-check" [Bresswit]
(4) "Marlin-Lite" IOP [cumuvw'20]

5 putting it all together.
(1) Arithmetic circuits \& constraints

A boolean circuit is a DAG where:

- nodes are "gates" - Λ or \oplus
- nodes lave in-degree 2
- edges are "wires" labeled Dor 1.
- We say circuit C is satisfied if all wires are labeled such that:

$$
\begin{aligned}
& x_{1} \rightarrow y=x_{1} \wedge x_{2} \\
& x_{2}(\wedge) \rightarrow y \\
& x_{1} \rightarrow\left(\oplus \rightarrow y=x_{1} \oplus x_{2}\right. \\
& x_{2} \rightarrow(1)
\end{aligned}
$$

How can we generalize this?

Arithmetic circuit:

- gates are x or + over \mathbb{F}
- wires take valued from IF

Arithmetic circuit C is
satisfied if all wires are labeled such that:

$$
\begin{aligned}
& x_{1} \rightarrow(X) \rightarrow y=x_{1} \times x_{2} \in \mathbb{F} \\
& x_{2} \pi \\
& x_{1} \rightarrow H \rightarrow y=x_{1}+x_{2} \in \mathbb{F} \\
& x_{2}+\oplus \rightarrow y
\end{aligned}
$$

$\Rightarrow A$ Boolean Circuit is an A.C.
where $\mathbb{F}=\mathbb{F}_{2}$

$$
\Rightarrow \begin{aligned}
& x \text { in } \vec{F}_{2} \text { is } \hat{2} \\
& + \text { in } \mathrm{H}_{2} \text { is } \oplus
\end{aligned}
$$

Example:

Equivalently, as constraints:

$$
\begin{array}{ll}
w_{1}=x_{1}+x_{2} & \text { But: these can } \\
w_{2}=w_{1} \times x_{3} & \text { be } t \text { or } x \\
w_{3}=7 \times x_{4} & \begin{array}{l}
\text { cal we rewrite }
\end{array} \\
y_{1}=w_{2} \times w_{3} & \begin{array}{l}
\text { using one } \\
\end{array} \\
& \\
\text { Kind of of } \\
\text { constraint? }
\end{array}
$$

Rank-1 constraints:
Define $z \triangleq(\vec{x}, \vec{y}, \vec{w}, 1) \in \mathbb{F}^{n}$

For $a, b, c \in \mathbb{F}^{n} \Longleftarrow$| length n |
| :---: |
| of |
| $\substack{\text { bors }}$ |

a rank-1 constraint is:

$$
\langle a, z\rangle \times\langle b, z\rangle=\langle c, z\rangle
$$

$\langle;$,$\rangle is \operatorname{dot}$ (inner product)

$$
\Rightarrow\langle a, z\rangle=\sum_{i} a[j] \times z[j]
$$

$a[j]$ is $j{ }^{j}{ }^{j}$ entry of a
$z[j]$ is jthentry of z.
\Rightarrow constraints on liver Combinations of wire values.

As Rank-1 constraints:
(1) write down outputs of x gute.
(1) $w_{2}=\left(x_{1}+x_{2}\right) \times x_{3}$
(2) $w_{3}=7 \times x_{4}$
(3) $y_{1}=w_{2} \times w_{3}$
(2) define z :

$$
z \triangleq\left(x_{1}, x_{2}, x_{3}, x_{4}, y_{1}, w_{2}, w_{3}, 1\right)
$$

(3) for each constraint, real out $a, b, \& c$ vectors

$$
\begin{array}{l|l}
c_{1}=(0,0,0,0,0,1,0,0) & w_{2} \\
a_{1}=(1,1,0,0,0,0,0,0) & x_{1}+x_{2} \\
b_{1}=(0,0,1,0,0,0,0,0) & x_{3} \\
c_{2}=(0,0,0,0,0,0,1,0) & w_{3} \\
a_{2}=(0,0,0,0,0,0,0,7) & 7 \\
b_{2}=(0,0,0,1,0,0,0,0) & x_{4} \\
c_{3}=(0,0,0,0,1,0,0,0) & y_{1} \\
a_{3}=(0,0,0,0,0,1,0,0) & w_{2} \\
b_{3}=(0,0,0,0,0,0,1,0) & w_{3}
\end{array}
$$

A Rauk-1 constraint system (PIcs) is given by three $m \times n$ matricie $A, B, C \in \mathbb{F}^{m \times n}$

$$
\begin{aligned}
& C \triangleq\left[\begin{array}{c}
c_{1}^{c_{1}} \\
c_{2} \\
\vdots \\
c_{m}
\end{array}\right]
\end{aligned}
$$

For $z \in \mathbb{F}^{n}$, RICS is Satisfied if

$$
A z \circ B z=C z
$$

Telement-wise product.

For R1CS $A, B, C \in \mathbb{F}^{m \times n}$ and input/output vectors x, y, we say that an instance is satisfiable if
ow:

$$
\begin{gathered}
z \triangleq(x, y, w, 1) \in \mathbb{F}^{n} \\
A z \circ B z=C z
\end{gathered}
$$

Theorem: R1CS-SAT is NP complete.
\Rightarrow We saw AC-SAT - to-RACS-SAT transformation above.
(HICS-SAT-to-AC-SAT is lewis mechmial)
AC-SAT is NP- complete \Rightarrow RICSSAT is to.
So: why RICS-SAT?
\Rightarrow Good structure for Polynomial IOPS.
\Rightarrow good compilation target (maybe...)

2 From polynomial commitments to SNAREs via Interactive Oracle Profs. High-level idea:

Interactive oracle Proofs (TOPs)
LOPS [RRR'16, BCS'16] generalize IAs \& PCP.
Informally: in each round,
8 gives V oracle access to its message
$\Rightarrow T$ queries P^{\prime} 's messages
Today: our focus is on \wedge Topic com where P^{*} is limited to sending cheating polynomials of bounded degree, which V quenes.
\Rightarrow Spoiler: implemented of polynomial comet cominitments.
p

Then: make evaluation queries to polynomials, accept/reject.
To "compile" this IOP to a SNARG:

- θ commits to polynomials, opens at V's query points
- V checks p's spring pots
- non-interactivity via Fiat-Shami
\Rightarrow First, some polynomial sub-potecols.
(3) Fun with polynomials
\Rightarrow sub-protocols we need for Marlin-Lite.
Polynomial protocol \#1 PP\#1
polynomial equality IOP.
Fact \#1: two distinct polynomials of degree $\leq d$ agree on $\leq d$ points.
\Rightarrow Univariate cave: for Q, R each of degree at most d, $S=Q-R$ is a polynomial of degree $\leq d$. By fundamental theorem of algolera, 5 has $\leqslant d$ roots $\Rightarrow Q R R$ agree on at most d points.
\Rightarrow multivariate: Schwarz-Ziped lemma.

Protocol:
(1) P sends Q, R oracles to r
(2) V selects $\gamma \leftarrow \mathbb{F}$ and queries $\alpha(\gamma), R(\gamma)$
(3) $Q(\gamma)=R(\gamma) \Leftrightarrow$ ACCEPT

Completeness: immediate
Soundness: error $\leq \frac{d}{|F|}$ by Fact +M|.
PPHI : polynomial vanishing on a multiplicative subgroup $H \leq F^{F}$
Let $H \subseteq|F,|H|=n, h$ a generator.
Define

Fact \#2 A degrees polynomial $g(X)$ vanishes on a set H iff there exists a polynomial R of degree $\leq d-|H|$ st.

$$
g(X)=Z_{H}(X) R(X)
$$

Protocol:
(1) P Sends g, R oracles to V
(2) V selects $\gamma \nsubseteq \mathbb{F}$, queries $g(\gamma) \& R(\gamma)$, evaluates $z_{H}(\gamma)$
(3) $g(\gamma)=z_{\hbar}(\gamma) R(\gamma) \Leftrightarrow$ ACCEPT \uparrow completeness: by Fact \#2 leary soundness, as pp\#1

PP\#3: "univariate sum-chede"
[BCRssw'19]
Goal: for $H \subseteq \mathbb{F}$ a multiplication Subgroup and polynomial \mathcal{Q} of degree d, P convinces V that

$$
\left(E_{q} n \text { 1) } \sum_{\alpha \in H} Q(\alpha)=0\right.
$$

[Buyout \& chapman 1999]
Fact \#3 (En 1) holds iff therecirst polynomials $\begin{cases}R & \text { of degree } \leq d-n \\ S & \text { of degree }<n-1\end{cases}$ such that

$$
Q(x)=z_{H}(x) R(X)+X S(x)
$$

PROTOCOL
(1) P sende \mathcal{Q}, R, S oracles to r
(2) V selects $\gamma \& \mathbb{H}$, quariea $\alpha(\gamma), R(\gamma), \& S(\gamma)$, and evaluates $Z_{H}(\gamma)$
(3)

$$
\begin{aligned}
\alpha(\gamma) & =z_{H}(\gamma) R(\gamma)+\gamma S(\gamma) \\
& \Leftrightarrow \text { ACCEPT }
\end{aligned}
$$

Completeneas: by Fact \#\#3 soundrest: as $\mathrm{Pp} \mathrm{\# 1}$
\Rightarrow now we're realy to build an IoP for R1CS?

4 "Marlin-Lite" : an Lop for RICS-SAT. [CHMMVW'20]

$$
\text { Fix } A, B, C \in F_{i}^{n \times n}
$$

Goal: prove $\exists z \in \mathbb{F}^{n}: A_{z} \circ B_{z}=C_{z}$
Ides $\# 1$: encode $z, A z, B_{z}, C_{z} \in \mathbb{F}^{n}$ as polynomial of degree $n-1$.

As before, $H \subseteq \mathbb{F}^{\text {is }}$ a multiplication
Subgroup of $\mid F$ with $|H|=n$.
Fix generator $h \Rightarrow H=\left\{h, h^{2}, h^{3}, \ldots\right\}$

Define $\hat{z}(X)$ to be the (unique) polynomial w/degrea<n such that

$$
\hat{z}\left(h^{i}\right) \triangleq z[i], \quad i \in\{1, \ldots, n\}
$$

Likewise, $\hat{z}_{A}\left(h^{i}\right) \triangleq(A z)[i]$

$$
\begin{aligned}
& \hat{z}_{B}\left(h^{i}\right) \triangleq(B z)[i] \\
& \hat{z}_{c}\left(h^{i}\right) \triangleq \underset{\text { length -n vector }}{\left(C_{z}\right)}[i]
\end{aligned}
$$

$\Rightarrow P_{\text {sends }} V \hat{z}, \hat{z}_{\hat{u}}, \hat{z}_{3}, \hat{z}_{c}$ oracles Then

$$
\begin{gathered}
A z \circ B Z=C z< \\
z_{A}\left(h^{i}\right) \cdot \hat{z}_{B}\left(h^{i}\right)=\hat{z}_{C}\left(h^{i}\right)
\end{gathered}
$$

$A_{z} \cdot B_{z}=C_{z}$ iff $\hat{z}_{A}(X) \hat{z}_{B}(X)-\hat{z}_{C}(X)$ is a pohynomial that vamshes on H \Rightarrow use PP\#Z?
(1) P sends $V \quad k$ rrade s.t.

$$
\hat{z}_{A}(X) \hat{z}_{\beta}(X)-\hat{z}_{c}(X)=R(X) z_{A}(X)
$$

(2) V picks $\gamma \not \pm \mathbb{F}$, checks that

$$
\begin{aligned}
& \hat{z}_{A}(\gamma) \hat{z}_{B}(\gamma)-\hat{z}_{c}^{\prime}(\gamma)=z_{F}(\gamma) R(\gamma) \\
& \Rightarrow \text { Soundness error } \leq \frac{2 n}{|\mathbb{F}|}
\end{aligned}
$$

But: how do we know that \hat{z}_{k} is consistent w/ the vector A_{z} ?
Ides \#2 Encode $A \in \mathbb{F}^{n \times n}$ as a bi-variate polywiond as before: unique \hat{A} st.

$$
\hat{A}\left(h^{i}, h^{j}\right)=A_{i j} \quad \begin{aligned}
& \text { By seferin of or } \\
& \text { product ic }
\end{aligned}
$$

Then

$$
\frac{\text { Then }}{(\operatorname{Ean} 2)} \hat{z}_{A}(X)=\sum_{i=1}^{n} \hat{A}\left(X, h^{i}\right) \hat{z}\left(h^{i}\right)
$$

and likewise for
\hat{Z}_{B}, \hat{B} and \hat{Z}_{C}, \hat{C}
How do we cluck this?
-To start, apply PP\#1:
$\Rightarrow V$ pichs $\beta_{A^{*}} F_{\text {, sends to }} P$ Now, if

$$
\left(E_{q n} 3\right) \hat{z}_{A}\left(\beta_{A}\right)=\sum_{i=1}^{n} \hat{A}\left(\beta_{A}, h^{i}\right) \hat{z}\left(h^{i}\right)
$$

then (Eqn 2) holds exept w/probebility $\frac{n}{|F|}$

- To chede (Eqn 3), first define

$$
\alpha_{A}(X) \triangleq \hat{A}\left(\beta_{A}, X\right) \hat{z}(X)-\frac{\hat{z}_{A}\left(\beta_{A}\right)}{|H|}
$$

Now, (Eqn 3) holds iff

$$
\begin{array}{r}
\sum_{i=1}^{n} Q_{A}\left(h^{i}\right)=0 \\
\Rightarrow \text { use Pp\#3? }
\end{array}
$$

(1) P sends R_{A}, S_{A} oracles (2) v selects $\gamma_{A} \pm \not \mathbb{F}_{\text {, evaluation }}$ $\hat{A}\left(\beta_{A}, \gamma_{A}\right), Z_{H}\left(\gamma_{A}\right)$, queries $\hat{z}_{A}^{\hat{1}}\left(\beta_{A}\right), \hat{z}\left(\gamma_{A}\right), R_{A}\left(\gamma_{1}\right), S_{A}\left(\gamma_{A}\right)$, and checks that

$$
\begin{aligned}
& \hat{A}\left(\beta_{A}, \gamma_{A}\right) \hat{z}\left(\gamma_{A}\right)-\frac{z_{A}\left(\beta_{A}\right)}{n} \stackrel{?}{=} \\
& R_{A}\left(\gamma_{A}\right) z_{H}\left(\gamma_{A}\right)+\gamma_{A} S\left(\gamma_{A}\right)
\end{aligned}
$$

if s_{0}, \hat{z}_{A} is correct up to sounder. \Rightarrow repent for $\hat{z}_{B}, B \& \hat{z}_{C}, C$.
(5) Putting it all together.

- P knows withens w s.t., $z \tilde{f}(x, y, w, 1) \in f^{n}$

$$
A_{z} \circ B_{z}=C_{z}
$$

for RICS matrices $A, B, C \in \mathbb{F}^{+M}$

- V knows A, B, C, x, y.
\Rightarrow Checking for R1CS-SAT $w / \hat{z}_{A}, \hat{t}_{s}, \hat{t}_{c}$
(1) P sends $\hat{z}, \hat{z}_{A}, \hat{z}_{s}, \hat{z}_{c}, R$ oradea
(2) V samples $\gamma \geqslant H$, duucs

$$
\hat{z}_{A}(\gamma) \hat{z}_{B}(\gamma)-\hat{z}_{C}(\gamma)=R(\gamma) z_{t t}(\gamma)
$$

\Rightarrow Checking $\vec{z}_{A}, \hat{z}_{B}, \hat{z_{C}}$ vs A, B, C, \hat{z}
(3) V samplea $\beta_{A}, \beta_{B}, \beta_{C}+\frac{\neq}{}$ IF
(4) P sends $R_{A}, S_{A}, R_{B}, S_{B}, R_{C}, S_{C}$
(5) V evaluates \& cluckes per prevoine page.

Some details we ignored:
(1) P sends \hat{z}, not \hat{W} how can r ensure that

$$
z=(x, y, w, 1)
$$

\checkmark supplies then?
is ok? \Rightarrow use poly commit homomorphism tides.
(2) Does an H exist?
\Rightarrow pick \mathbb{F} carefully, pad n to a "good" size
(3) Evaluating $\hat{A}(\because)$ is expensive for r.
\Rightarrow could be OR.
OR: "structured" computation Makes evaluating $\hat{A}(\cdot$, cheap
OR: "outsource" evaluation Idea: V commits to \hat{A}, then P evaluates, convmics v that claimed evil is correct.
\Rightarrow see $\oint 9$ of Justin Thaler's book:

