Lecture 16: Lattice-based ceyptography

June $2^{\text {de }} 2020$

Logistics:

- HW 5 is out - Due June !
- one late day maximum!!
- As always, anonymous feedback welcome
- Please respond to course feedback on Ares: \rightarrow it's not differentially private:

Plan: lattice-based cryptography

* Why lattices?
* Learning with errors \& Reger encryption
* Warst-case (attics problems (time permitting)

Course overview

Why study lattice-based crypto?

1) Gives schemes with plausible post-quautum security \mapsto factoring, dog are easy (pot fine) on a quantum counter \rightarrow no known efficient quantum e algos for many lattice problems \rightarrow ongoing standardization ellort by NIST
2) New functionalities e.g. :FHE:
\rightarrow Unknown how to build these from other assumptions
3) Nice theoretical consequences
\rightarrow Cryptography based on worst-case hardness
\rightarrow Holy grail: Crypblolased on an Nr. hare problem

Warmup: solving systems of equations over \mathbb{Z}_{9}

$$
\begin{aligned}
& 3 x_{1}+4 x_{2}+1 x_{3}=0 \\
& 4 x_{1}+2 x_{2}+6 x_{3}=\frac{1}{1} \quad(\bmod 7) \\
& 1 x_{1}+1 x_{2}+1 x_{3}=1
\end{aligned}
$$

Solution : $\quad x_{1}=1, \quad x_{2}=-1, x_{3}=1$
How: Gaussian elimination! (works bor any lied)

Matrix notation:

Learning with Errors
What it the system is noisy?
\Rightarrow Given A and $A x+e^{\text {randan noise }}$, can you recover x ?

For some choices of parameters \& noise, this is:

1) well-delined (x is unique with high probability)
2) Conjectured to be hard?

Some notation:

- We view \mathbb{Z}_{9} as the integers in the range $\left(\frac{-9}{2}, \frac{q}{2}\right) \longrightarrow$ eq. $\mathbb{Z}_{7}=\{-3,-2,1,0,1,2,3\}$
- for $e \in \mathbb{Z}_{q}^{m}$, $\|e\|_{\infty}=\max |e:|$

Let $A \leftarrow \mathbb{Z}_{q}^{m \times n}, s \leftarrow \mathbb{Z}_{q}^{n}, e \leftarrow X_{B}^{m}$
Given ($A, A s+e$) find s^{\prime} sot $\left\|A s^{\prime}-(A s+e)\right\|_{\infty} \leqslant B$
$\rightarrow S$ is one possible solution,
(not veressarity unite)

That's a lot of parameters:

- $n=$ security parameter (more unknowns = harder prodem)
- $m=$ poly $(n), m \gg n$ (overdetermined) (nor equations = easier problem)
- $q=\operatorname{potr}(u)$, say $q=d_{u^{2}}$)
- $B \ll q$ (smaller noise bound = easier problem)
$\rightarrow M, B, q$ are chosen so that the search $\angle W E$ problem has a unique solution with high probability

From search to decision
In crypto, it's often easier to work with decision problems than with seard problems.
egg. DDH Us. $C D H$
\leftrightarrow distinguish $\left(9,9^{a}, 9^{b}, 9^{a b}\right) \quad \leftrightarrow$ given $\left(9,9^{a}, b^{b}\right)$ compute $g^{a b}$ from $\left(9,9^{a}, 9^{a}, 9^{+}\right)$

LWE $\left(u, m, q, x_{B}\right):$ (decision version)

$$
\underbrace{\left\{(A, A s+e) \left\lvert\, \begin{array}{l}
A \leftarrow \mathbb{Z}_{q}^{m \times n} \\
s \leftarrow \mathbb{Z}_{q}^{n} \\
e \leftarrow x_{B}^{m}
\end{array}\right.\right\}}_{D_{L W E}}\} \quad\{\underbrace{\left.(A, u) \left\lvert\, \begin{array}{c}
A \leftarrow \mathbb{Z}_{q}^{m \times n} \\
u \leftarrow^{R} \mathbb{Z}_{a}^{m}
\end{array}\right.\right\}}_{\text {Brand }}
$$

Goal: distinguish Dlwe from Brand
LWE assumption: DLWE Nc Brand
\rightarrow Intuition: hard to distinguish vectors "close" to the image of A from random vector in $\mathbb{Z a m}^{m}$
\rightarrow The search and decision versions of $\angle W E$ are equally hard \square_{0}

Regev encryption (Regev Zoos)
A simple "El-Ganal style" public-key cryplosststem from LWE

Key $\operatorname{Gen}\left(1^{\lambda}\right):$

$$
\left.\begin{array}{l}
A \leftarrow \mathbb{Z}_{a}^{m \times n} \\
s \leftarrow \mathbb{Z}_{1}^{n} \\
e \leftarrow X_{B}^{a} \\
b=A s+e
\end{array}\right\} \begin{aligned}
& \text { chose paramelers } \\
& \text { such shat } 9 / 4>m B \\
& \text { set } s k=s, p k=(A, b)^{e Z_{M}^{m}}
\end{aligned}
$$

 $r \leftarrow^{R}\{0,1\}^{m}$
L.S. couns down 10 nearest ingerer

$$
c_{0}=r^{\top} A, \quad c_{1}=r^{\top} b+\left\lfloor\frac{a}{2}\right\rfloor^{k^{\prime}} \cdot x
$$

outent $c t=\left(c_{0}, c_{1}\right) \in \mathbb{Z}_{q}^{n} \times \mathbb{Z}_{q}$
Decrypt (sk,ct):

$$
\begin{aligned}
& \tilde{x}=c_{1}-c_{0} \cdot s \\
& \text { if }|\vec{x}|<9 / 4 \text { oulfout } x=0
\end{aligned}
$$

ete confant $x=1$

Correctness:

$$
\begin{aligned}
\tilde{x}=C_{1}-C_{0} \cdot S & =r^{\top} b+\left\lfloor\frac{a}{2}\right\rfloor \cdot x-r^{\top} A S \\
& =r^{\top}(A s+e)+\left\lfloor\frac{a}{2}\right\rfloor \cdot x-r^{\top} A s \\
& =r^{\top} A s+r^{\top} e+\left\lfloor\frac{a}{2}\right\rfloor \cdot x-r^{\top} A S \\
& =r^{\top} e+\left\lfloor\frac{9}{2}\right\rfloor \cdot x \rightarrow \text { "noisy" plaintert }
\end{aligned}
$$

we have $e \leftarrow X_{B}^{m}$ and $r \leftarrow\{0,1\}^{m}$ so $\left|r^{\top} e\right| \leq m B<9 / 4$
So if $x=0,|\tilde{x}|<\frac{9}{4}$. If $x=1,|\tilde{x}|>\left\lfloor\frac{9}{2}\right\rfloor-\frac{9}{4} \geqslant \frac{9}{4}$

Security: (sequence of hybrids over the view of the adversary)

In $H_{y} b_{z}$, the cipher text is randan and independent of the message x.

Leftover flash Lemma (simplified version):

- Let $m \geq 2 n \log q$
- if $A<\mathbb{Z}_{a}^{m \times n}, x \nleftarrow^{R}\{0,1\}^{m}, y<\mathbb{Z}_{a}^{n}$, then

$$
\left(A, x^{\top} A\right) \tilde{N}_{\text {stat }}(A, y)
$$

Hard Lattice problems
Why is LWE a "lattice" problem?
What's a lattice?
a set of points in \mathbb{Z}^{n} that are linear combinations of some bass vectors $B=\left\{\vec{b}_{1}, \ldots \overrightarrow{b_{n}}\right\}$

$$
\mathcal{L}(B)=\left\{\sum_{i=1}^{n} a_{i} \cdot \vec{b}_{i} \mid a_{i} \in \mathbb{Z}\right\}
$$

in 2 dimensions:

The hardness of LWE is related to the hardness of certain problems on lattices

Hard problems on lattices:

1) Shortest vector problem (SVP)
\rightarrow lind shortest (e.g. in loo norm) non-zero vedor in L(B) \longrightarrow NP-hard:
2) Closest rector problem (CVP)
\rightarrow given $\vec{F} \in \mathbb{Z}^{n}$, find $\vec{v} \in L(B)$ that minimizes $\|\vec{r}-\vec{v}\|$
\longrightarrow similarities to search $L \omega \in$: given $\overrightarrow{\vec{b}}=A \vec{s}+\vec{e}$, find closet point of the loom $A \vec{s} \in \mathbb{Z}_{9}^{m}$
3) $\gamma-S V P / \gamma-\operatorname{CVP}$
\rightarrow egg. it shares veto has worn N,

\rightarrow solve SVP/CVP approximately (u pto a factor $\gamma>1$)

* for $\gamma=O(1), \gamma$-SUe is NP-hard
* for $\gamma=2^{(\omega)}, \gamma$-SUP is easy (poly time)
* for $\gamma=$ poly $(u), \gamma$-SUP is conjectured to be hard. Moreover, if γ-SUP is hard for sone lattice in \mathbb{Z}^{n}, this implies that $L \omega \in(u, m, a, B)$ is dso hard (loo appropriate m, a, B)
\Rightarrow We can base crypts on the (conjectwed) worst-case hardier of a lattice problem.
\Rightarrow Open question: base crypto on an NP-hard problem

