Lecture 16: Lattice-based Cryptography

June 2nd 2020
Logistics:

• HW 5 is out • Due June 10th
 • ONE LATE DAY MAXIMUM

• As always, anonymous feedback welcome

• Please respond to course feedback on Axess

Plan: lattice-based cryptography

* Why lattices?
* Learning with errors & Regev encryption
* Worst-case lattice problems (time permitting)
Course overview

Why study lattice-based crypto?

1) Gives schemes with plausible post-quantum security
 - Factoring, DLog are easy (polynomial) on a quantum computer
 - No known efficient quantum algs for many lattice problems
 - Ongoing standardization effort by NIST

2) New functionalities e.g.
 - LWE, FHE
 - Unknown how to build these from other assumptions

3) Nice theoretical consequences
 - Cryptography based on worst-case hardness
 - Holy grail: Crypto based on an NP-hard problem
Warmup: solving systems of equations over \mathbb{Z}_q

\[\begin{align*}
3x_1 + 4x_2 + 1x_3 &= 0 \\
4x_1 + 2x_2 + 6x_3 &= 1 \\
1x_1 + 1x_2 + 1x_3 &= 1 \\
\end{align*} \quad \text{(mod 7)} \]

Solution: $x_1 = 1$, $x_2 = -1$, $x_3 = 1$

How: Gaussian elimination \(\checkmark \) (works for any field)

Matrix notation:

\[\begin{align*}
A \in \mathbb{Z}_q^{m \times n} \cdot x \in \mathbb{Z}_q^n &= b \in \mathbb{Z}_q^n
\end{align*} \]
Learning with Errors

What if the system is noisy?

\(\Rightarrow \) Given \(A \) and \(Ax + e \), can you recover \(x \)?

For some choices of parameters & noise, this is:

1) well-defined (\(x \) is unique with high probability)
2) conjectured to be hard?

Some notation:

- We view \(\mathbb{Z}_q \) as the integers in the range \((-\frac{q}{2}, \frac{q}{2})\)
- For \(e \in \mathbb{Z}_q^m \), \(\|e\|_\infty = \max |e_i| \)
- \(X_B = B\text{-bounded distribution} \Rightarrow \Pr_{e \sim X_B} [\|e\|_\infty \leq B] = 1 \)

\(\rightarrow \) eg. \(\mathbb{Z}_3 = \{\pm 3, \pm 2, \pm 1, 0, 1, 2, 3\} \)

eg uniform on \(-3, -2, \ldots, 0, \ldots, 3 \)
LWE(\(n, m, q, x_B\)): (search version)

Let \(A \leftarrow Z_q^{m \times n}\), \(s \leftarrow Z_q^n\), \(e \leftarrow X_B^n\)

Given \((A, As + e)\) find \(s'\) such that \(|As' - (As + e)|_2 \leq B\)

\(\Rightarrow s\) is one possible solution (not necessarily unique)

That’s a lot of parameters!

- \(n = \) security parameter (more unknowns = harder problem)
- \(m = \text{poly}(n), m \gg n\) (over-determined) (more equations = easier problem)
- \(q = \text{poly}(n), \) say \(q = d n^3\)
- \(B \ll q\) (smaller noise bound = easier problem)

\(\Rightarrow m, B, q\) are chosen so that the search LWE problem has a unique solution with high probability
From search to decision

In crypto, it's often easier to work with **decision** problems than with **search** problems.

E.g. **DDH** vs. **CDH**

- **DDH**: Given \((g, g^a, g^b)\), compute \(g^{ab}\)
- **CDH**: Given \((g, g^a, g^b)\), compute \(g^{ab}\)

\[\text{LWE}(u, m, q, X_b): \text{ (decision version)} \]

\[
\begin{align*}
\left\{ (A, As+E) \right\} & \rightarrow \begin{cases}
A \leftarrow \mathbb{Z}_q^{m \times n} \\
E \leftarrow \mathbb{Z}_q^n \\
e \leftarrow \mathbb{Z}_q^n
\end{cases} \\
\text{Dlwe} & \rightarrow \begin{cases}
A \leftarrow \mathbb{Z}_q^{m \times n} \\
U \leftarrow \mathbb{Z}_q^n
\end{cases} \\
\text{Drand} &
\end{align*}
\]

Goal: distinguish \text{Dlwe} from \text{Drand}

LWE assumption: \text{Dlwe} \neq \text{Drand}

Intuition: hard to distinguish vectors "close" to the image of \(A\) from random vectors in \(\mathbb{Z}_q^n\)

The search and decision versions of LWE are equally hard.

We believe this isn't the case for DDH/CDH

E.g. in pairing groups
Regev encryption (Regev 2005)

A simple "El-Gamal style" public-key cryptosystem from LWE

Key Gen(1^k):

\[
\begin{align*}
A & \leftarrow \mathbb{Z}_q^{m \times n} \\
s & \leftarrow \mathbb{Z}_q^* \\
e & \leftarrow X_{\mathbb{Z}_q^*} \\
b & = As + e \\
end{align*}
\]

\{ choose parameters such that \(q/4 > mB \) \}

set \(sk = s \), \(pk = (A, b) \)

Encrypt (pk, x \in \{0,1\}):

\[
\begin{align*}
c_0 & \leftarrow \mathbb{Z}_q^{m} \\
r & \leftarrow \mathbb{Z}_q^{m} \quad \left(\text{rounds down to nearest integer} \right) \\
c_0 = r^TA, \quad c_1 = r^Tb + \left\lfloor \frac{q}{2} \right\rfloor \cdot x \\
end{align*}
\]

output \(Ct = (c_0, c_1) \in \mathbb{Z}_q^n \times \mathbb{Z}_q \)

Decrypt (sk, ct):

\[
\begin{align*}
x & = c_1 - c_0 \cdot s \\
if \ |x| < q/4 & \text{ output } x = 0 \\
else & \text{ output } x = 1
\end{align*}
\]
Correctness:

\[
\tilde{x} = c_1 - c_0 \cdot s = r^T b + L_{\frac{q}{3}} \cdot x - r^T As
\]
\[
= r^T (As e) + L_{\frac{q}{3}} \cdot x - r^T As
\]
\[
= r^T As + r^T e + L_{\frac{q}{3}} \cdot x - r^T As
\]
\[= r^T e + L_{\frac{q}{3}} \cdot x \rightarrow "noisy" \text{ plaintext}
\]

We have \(e \leftarrow \chi^m \) and \(r \leftarrow \chi^{0,13^m} \) so \(|r^T e| \leq mB < q/4 \)

So if \(x = 0, |\tilde{x}| < \frac{q}{4} \). If \(x = 1, |\tilde{x}| > \frac{q}{2} - \frac{q}{4} \geq \frac{q}{4} \)

Security: (sequence of hybrids over the view of the adversary)

<table>
<thead>
<tr>
<th>experiment</th>
<th>(H_{ybo}): (pk = (A, b = A \cdot x e)), (c_0 = r^T A), (c_1 = r^T b + L_{\frac{q}{3}} \cdot x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>indistinguishable</td>
<td>(H_{yb1}): (pk = (A, v \leftarrow Z_q^m)), (c_0 = r^T A), (c_1 = r^T v + L_{\frac{q}{3}} \cdot x)</td>
</tr>
<tr>
<td>statistically indistinguishable</td>
<td>(H_{yb2}): (pk = (A, v \leftarrow Z_q^m)), (c_0 \leftarrow Z_q^m), (c_1 \leftarrow Z_q)</td>
</tr>
</tbody>
</table>

In \(H_{yb2} \), the ciphertext is random and independent of the message \(x \).

Leftover Hash Lemma (simplified version):

- Let \(m \geq 2n \log q \)
- If \(A \leftarrow Z_q^{mn}, x \leftarrow \xi_0,13^m, y \leftarrow Z_q^m \), then \((A, x^T A) \nleftrightarrow (A, y)\)
Hard Lattice problems

Why is LWE a "lattice" problem?

What's a lattice?

A set of points in \mathbb{Z}^n that are linear combinations of some basis vectors $B = \{b_1, \ldots, b_n\}$

$L(B) = \{ \sum_{i=1}^{n} a_i \cdot \vec{b}_i \mid a_i \in \mathbb{Z} \}$

in 2 dimensions:

The hardness of LWE is related to the hardness of certain problems on lattices
Hard problems on lattices:

1) **Shortest vector problem (SVP)**
 - Find shortest (e.g., in $\|\cdot\|_\infty$ norm) non-zero vector in $\mathbb{L}(B)$
 - \leftrightarrow NP-hard

2) **Closest vector problem (CVP)**
 - Given $\mathbf{f} \in \mathbb{Z}^n$, find $\mathbf{v} \in \mathbb{L}(B)$ that minimizes $\|\mathbf{f} - \mathbf{v}\|$
 - \leftrightarrow Similarities to search LWE: given $\mathbf{f} = \mathbf{h}_s + \mathbf{e}$, find closest point of the form $\mathbf{h}_s' \in \mathbb{Z}^n$

3) **γ-SVP / γ-CVP**
 - Solve SVP/CVP approximately (up to a factor $\gamma > 1$)

 * for $\gamma = O(1)$, γ-SVP is NP-hard
 * for $\gamma = 2^{\omega(n)}$, γ-SVP is easy (polynomial time)
 * for $\gamma = \text{poly}(n)$, γ-SVP is conjectured to be hard.

Moreover, if γ-SVP is hard for some lattice in \mathbb{Z}^n, this implies that LWE (u, m, q, B) is also hard (for appropriate m, q, B)

\Rightarrow We can base crypto on the (conjectured) worst-case hardness of a lattice problem.

\Rightarrow Open question: base crypto on an NP-hard problem