Lecture 19: Fully Homomorphic Encryption (FHE)

$$
\text { Pt. } 1
$$

Plan

Recap: LWE

Fully Monomorphic Encryption
Introduction \& history
Syntax 3 security
Building leveled FHE

Recap: Learning with Errors

$$
\begin{aligned}
& \operatorname{LWE}\left(n, m, q, X_{B}\right) \\
& \left\{(A, A \vec{j}+\vec{e}): \begin{array}{l}
A \Leftrightarrow Z_{q}^{m \times n} \\
\vec{s} \& Z_{q}^{n} \\
\vec{e} \in X_{b}^{n}
\end{array}\right\} \approx\left\{(A, u): \begin{array}{l}
A \in Z_{2}^{m \times n} \\
u \in Z_{q}^{n}
\end{array}\right\} \\
& m n^{n} \cdot n^{n} s+m\left[\begin{array}{c}
1 \\
1 \\
\frac{0}{4} \\
\frac{1}{4}
\end{array}\right.
\end{aligned}
$$

Fully Homomorphic Encryption
Idea: outsource computation without revealing inputs!

Examples:

- PIR: input i, output $f(i)=D B[i]$
- private ML: training, inference
- Whatever you want to outsource!

Brief history

- 1978 - Rivest, Adleman, Dertouzous introduced a notion of FHE

Context: Dittieb Hellman introduced PK crypt in 1976
\downarrow no mbroken candidates for many years

- 2009 - Craig Gentry (Stanford PhD student)
© CS355 TA fall '07
gives first construction!
- From new (non-standard) assumption
- introduces "bootstrapping" idea (see next lecture)
- 2011 - Brakerski, Vailluntanathan

FHE based on LWE

- 2013 - Gentry, Sahai, Waters
" 3rd gen" FHE \leftarrow today's topic

FHE syntax
$\operatorname{HeyGen}\left(1^{\wedge}\right) \rightarrow \mathrm{Sk}^{\text {We will look at symatic. .ny FHE There is }}$

$$
E n c(s x, \mu) \rightarrow C t
$$

$\operatorname{Dec}(s k, c t) \rightarrow M$
$\operatorname{Eval}\left(F, c t_{1}, \ldots, c t_{2}\right) \rightarrow \widetilde{c t}$ exryption of circuit output
function to evaluate, represented as boolean crocus
encryptions of inputs

FHE Properties

1) Correctness: $\forall F:\left\{0,13^{q} \rightarrow\{0,1\}, \quad \mu_{1}, \cdots, \mu_{p} \in\{0,1\}\right.$ $s k \in$ Heyben $\left(r^{\prime}\right)$, then with polofilly $2:$
$\left.\operatorname{Dec}\left(s h, E_{\operatorname{val}}\left(F, E_{n c}\left(s x_{1},\right)_{1}\right), \ldots, E_{n c}\left(s \mu_{1}, \mu_{l}\right)\right)\right)=F\left(\mu_{1}, \ldots, \mu_{f}\right)$

+ usual encryption correctness

2) Semantic Secinty

$$
\left.\forall \mu_{0}, \mu_{1} \in\{0,1\} \quad\left\{E_{n c}\left(s s_{1}, \mu_{1}\right)\right\} \approx E_{n c}\left(s k, \mu_{1}\right)\right\}
$$

3) Compactiress

$$
\begin{aligned}
& \quad \forall F_{, s k} \quad c t_{i} \leftarrow E_{n c}\left(s k, \mu_{1}\right) \\
& \text { if } \tilde{c t} \leftarrow E_{\operatorname{val}}\left(F_{1}, c t_{1}, \ldots, c t_{1}\right)
\end{aligned}
$$

then $|\tilde{c t}|=\operatorname{poly}(\lambda) \longleftarrow \tilde{c t}$ size is independent of $\mid \mathrm{FI}, \ell$

Note: without compactness, any encryption scheme is also fully homomorphic!

$$
\left\{\begin{array}{l}
E_{\operatorname{val}}(F,\{c t,\}) \rightarrow(F,\{c t,\}) \\
\operatorname{Dec}\left(s k,(F,\{c t, 3)) \rightarrow F\left(\operatorname { D e c } \left(s s_{1},\left(t_{1}\right), \ldots, \operatorname{De}\left(s,\left(t_{t}\right)\right)\right.\right.\right.
\end{array}\right.
$$

Eval just writes dome F and all the inputs,
Dec evaluates F after decrypting!
Constructing FHE

Today: Construct leveled FHE

Can only evaluate low-depth circuits
Reason: Ciphertexts have noise that grows with each gate in circuit. Eventually, the mise overwhelms the msg.

Next time: use bootstrapping to remove restriction on circuit dep
\rightarrow Idea: refresh ciphertexts to clear accumulated noise.

Attempt 1 (insecure)
Secret Key is a vector \vec{s} \vec{s} is eigenvector of C wegeovate M
$\operatorname{Enc}(\vec{s}, \mu) \rightarrow$ matrix C st. $\overline{C \cdot \vec{s}=\mu \cdot \vec{s}}$
$\operatorname{Dec}(\vec{s}, C) \rightarrow$ Compute $C \cdot \vec{s}=\mu \cdot \vec{s}$ and find μ
Homomorphism: it C_{1}, C_{2} are encryptions of μ_{1}, μ_{2}
Addition: $\tilde{c}=C_{1}+C_{2} \quad\left(C_{1}+C_{2}\right) \vec{s}=C_{1} \dot{s}+C_{2} \vec{s}=\mu_{1} \vec{s}+\mu_{2} \vec{s}=\left(\mu_{1}+\mu_{2}\right) \vec{s}$ Evan ${ }^{\prime \prime}+, c_{1}, c_{2}$)

Multiplication: $\widetilde{C}=C_{1} \cdot C_{2}$ b) def
$\operatorname{Eval}\left({ }^{\prime} \cdot ;, c_{1}, c_{2}\right)$

$$
\begin{gathered}
\left(C_{1} \cdot C_{2}\right) \vec{s}=C_{1} \cdot\left(C_{2} \vec{s}\right)=C_{1} \mu_{2} \vec{s}=\mu_{2} \cdot\left(C_{1} \cdot \vec{s}\right)=\mu_{2} \mu_{1} \vec{s}=\mu_{1} \mu_{2} \vec{s} \\
\text { by def of Enc } \\
\text { by bf of Enc }
\end{gathered}
$$

Can eval,$+ \cdot \rightarrow$ fully horomorphe!
Problem: Given C, it's easy to find \vec{s} using Gaussian elimination :-
idea: We can make Gaussian elimination hard by adding noise!

$$
C \cdot \vec{s}=M \cdot \vec{s}+\vec{e}
$$

Attempt 2: Secret-hey varount of Regev encryption

$$
\begin{aligned}
& \text { HeyGero }\left(1^{n}\right): \quad \tilde{s} \in \mathbb{Z}_{q}^{n-1}, \quad \vec{s} \leftarrow\binom{\tilde{s}}{-1} \in \mathbb{Z}_{q}^{n} \\
& \text { Enc }(\vec{s}, \mu): A \leftrightarrow \mathbb{Z}_{q}^{n \times(n-1)} \quad \vec{e} \stackrel{\mathbb{R}}{ } X_{B}^{n} \\
& \text { output } C=\underbrace{\left(A, A_{s}+\vec{e}\right.})+\mu \cdot I_{n} \in \mathbb{Z}_{q}^{n \times n} \\
& \text { pseculorandom by LWE }
\end{aligned}
$$

$\operatorname{Dec}(\vec{s}, C)$: Compute $C \cdot \vec{s}$, output $\left\{\begin{array}{l}0 \text { if }\|C \cdot \vec{s}\|_{\infty} \text { small } \\ 1 \text { otherwise }\end{array}\right.$

$$
\begin{aligned}
C \cdot \vec{s} & =(A, A \tilde{s}+\vec{e})\binom{\tilde{s}}{-1}+M I_{n} \vec{s} \\
& =A \stackrel{\tilde{s}}{ }-A_{\vec{s}}-\vec{e}+M \vec{s}=M \vec{s}+\text { noise } \rightarrow\left\{\begin{array}{l}
\text { small: } M=0 \\
\text { lage : } M=1
\end{array}\right.
\end{aligned}
$$

\vec{s} is "apporxinate eiganvectro" of C with oppose. eigenalve μ.

Homomorphism:
Addition: $\tilde{C} \leftarrow C_{1}+C_{2}$

$$
\left(C_{1}+C_{2}\right) \vec{s}=C_{1} \vec{s}+C_{2} \vec{s}=\mu_{1} \vec{s}+\vec{e}_{1}+\mu_{2} \vec{s}+\vec{e}_{2}=\left(\mu_{1}+\mu_{2}\right) \vec{s}+\left(\vec{e}_{1}+\vec{e}_{2}\right)
$$

Noise doesin't grow two much, so we noise sill reosandly Small have additive homomorphism
(Would need to adjust Dec for $M \notin\{0,1\}$)
Multiplication: Can we do $\tilde{C} \leftarrow C_{1} \cdot C_{2}$?

$$
\begin{aligned}
\left(C_{1} \cdot C_{L}\right) \vec{s}=C_{1}\left(M_{2} \vec{s}+\vec{e}_{2}\right) & =M_{2} C_{1} \vec{s}+C_{1} \cdot \vec{e}_{2} \\
& =M_{2}\left(M_{1} \vec{s}+\vec{e}_{1}\right)+C_{1} \cdot \vec{e}_{2} \\
& =M_{1} \cdot M_{2} \cdot \vec{s}+M_{2} \cdot \vec{e}_{1}+C_{1} \cdot \vec{e}_{2} \\
& \text { still reasonably small } \\
& \text { for } M_{2} \in\{0,1\}
\end{aligned}
$$

So were still mable to multiply b/e noise grows with $\left\|C_{1}\right\|_{\infty}$, which can be large.

Need a way to male ciphertext matrices have Small norm.
Idea: represent number $x \in \mathbb{Z}_{q}$ as a sindl-norm vector via binary decomposition!

Binary Decomposition
For $x \in \mathbb{Z}_{2}$,
Define $\hat{x}=\left(x_{0}, x_{1}, \ldots, x_{\log q-1}\right)$ s.t. $x=\sum_{i=0}^{\log q-1} x_{i} \cdot 2^{i}$
inverse operation $\hat{x} \rightarrow x$
is linear!
let G be the vector that recons x from $\hat{x}: \hat{x} \cdot \vec{G}=x$

$$
\begin{aligned}
& \hat{x} \cdot \frac{\overrightarrow{6}}{}=x \\
&\underbrace{\left(x_{0, \ldots}, x_{\log q-1}\right.}_{\log q})
\end{aligned} \cdot\left(\begin{array}{c}
\left(\begin{array}{c}
2^{0} \\
2^{\prime} \\
\vdots \\
\vdots \\
2^{\log -1}
\end{array}\right)
\end{array}\right){ }_{1}^{\log q}=x
$$

Note: we call it \vec{G} for "garget"
can extend $(\hat{\bullet})$ operation to vectors

$$
\begin{aligned}
\vec{x} \in \mathbb{Z}_{q} \rightarrow & \hat{x} \\
& =\left(x_{0,0}, x_{0,1}, \ldots, x_{0, b_{2-1}}, \ldots, x_{n, 0,}, x_{n, 1}, \ldots, x_{1, b r-1}\right) \\
& \bullet \wedge,
\end{aligned}
$$

$\vec{x}=\hat{x} \cdot G$ is a linear transformation
1xnlogq $n \log q \times n$
where G is the matrix that recover \vec{x} from $\hat{x}: \hat{x} \cdot G=\vec{x}$

finally, can also extend $(\hat{0})$ to matrices

$$
C=\underbrace{\left(\begin{array}{c}
\vec{C}_{1} \\
\vdots \\
\vec{C}_{m}
\end{array}\right)}_{m \times n} \rightarrow \hat{\boldsymbol{C}}=\underbrace{\left(\begin{array}{c}
\hat{C}_{1} \\
\vdots \\
\vdots \\
\hat{C}_{m}
\end{array}\right)}_{m \times n \log q}
$$

And $C=\hat{C} \cdot G$ is still a linear transformation
(with gadget matrix 6 same as above)

Note: some sources refer to G as G^{-1} because it inverts bit decomposition

Now, let's get back to FHE!
$3^{\text {rd }}$ (and final) attempt: the GSW scheme

$$
\begin{aligned}
& \text { Heyben }\left(1^{n}\right): \tilde{s} \in \mathbb{Z}_{q}^{n-1} \quad \vec{s} \leftarrow\binom{\tilde{s}}{-1} \in \mathbb{Z}_{q}^{n} \\
& \text { Enc }(\vec{s}, m): A \stackrel{R}{\&} \mathbb{Z}_{q}^{m \times(n-1)} \quad \text { for } m=n \log q \\
& \vec{e} \stackrel{R}{\leftarrow} \chi_{B}^{m} \\
& C=\underbrace{(A, A \tilde{s}+\vec{e})+\mu G}_{m \times n}
\end{aligned}
$$

output $\underbrace{\hat{c}^{\hat{c}}}_{M \times M=m \times n \log z}$
Observe that $c t=\hat{c}$ has low norm since it is a $\{0,1\}$-matrix)!

$$
\begin{aligned}
& =(A, A s+\vec{e})\binom{\tilde{s}}{-1}+M \cdot G \cdot \vec{s} \\
& =M \cdot G \cdot \vec{s}-\vec{e}
\end{aligned}
$$

if first element is small, output $\mu=0$, Else, output $\mu=1$.
Why first element?

$$
\begin{aligned}
(M \cdot G \cdot \vec{s})_{1} & =M\left(\begin{array}{llll}
1 & 0 & \ldots
\end{array}\right)\left(\begin{array}{c}
s_{1} \\
s_{2} \\
s_{n} \\
s_{n-1} \\
-1
\end{array}\right) \\
& \left.=M \cdot \left\lvert\, \begin{array}{l}
s_{1} \mid \\
\text { which is } \theta(q) \\
\end{array}\right.\right)
\end{aligned}
$$

Let's see how this solves our multiplication problem: Eval (".", \hat{C}_{1}, \hat{C}_{2}): output $\hat{C}=\hat{C}_{1} \cdot \hat{C}_{2}$ <all $m \times m$ matrices Need to check $\operatorname{Dec}(\vec{s}, \hat{c}) \stackrel{?}{=} \mu_{1} \cdot \mu_{2}$

Proof

$$
\begin{aligned}
\hat{c}_{1} \cdot \underbrace{\hat{c}_{2} \cdot G}_{C_{2}} \cdot \vec{s} & =\hat{c}_{1} \cdot\left(c_{2} \cdot \vec{s}\right) \\
& =\hat{c}_{1} \cdot\left(\mu_{2} \cdot G \cdot \vec{s}+\vec{e}_{2}\right) \\
& =\mu_{2} \cdot \hat{C}_{1} \cdot G \cdot \vec{s}+\hat{c}_{1} \cdot \vec{e}_{2} \\
& =\mu_{2}\left(\mu_{1} \cdot G \cdot \vec{s}+\vec{e}_{1}\right)+\hat{c}_{1} \cdot \vec{e}_{2} \\
& =\mu_{1} \mu_{2} G \vec{s}+\mu_{2} \cdot \vec{e}_{1}+\hat{c}_{1} \cdot \vec{e}_{2}
\end{aligned}
$$

What about addition? Could that mate noise agee?
Turns out it's sufficient to support the universal NAND gate

$$
\operatorname{NAND}(a, b)=\operatorname{NbT}(\operatorname{AND}(a, b))
$$

USing NAND for other gates:

$$
\begin{aligned}
& \operatorname{NOT}(a)=\operatorname{NAND}(a, a) \\
& \operatorname{AND}(a, b)=\operatorname{NOT}(\operatorname{NAND}(a, b)) \\
& \operatorname{OR}(a, b)=\operatorname{NAND}(\operatorname{NOT}(a), \operatorname{NOT}(b))
\end{aligned}
$$

So how to build NAND?

$$
\operatorname{Eval}\left(N A N D, \hat{C}_{1}, \hat{C}_{2}\right): I_{m \times m}-\hat{C}_{1} \cdot \hat{C}_{2}
$$

Ct has M added mull over $\{0,1\}$ along its diagonal, is AND so $1-\mu$ is NOT

May! We have constructed an encruption scheme that can compute a universal gate over ciphertexts!
But this is a leveled FHE, so wire not dane yet.
Next time well see why this is not quite an FHE yet (noise growth), as well as a technique called Bootstrapping that will allow us to get a full FHE scheme.

