Lecture 19: Fully Homomorphic Encryption (FHE) Pt. 1
Plan

Recap: LWE

Fully Homomorphic Encryption

Introduction & history
Syntax & security
Building leveled FHE
Recap: Learning with Errors

\[
\text{LWE}(n,m,q,X_0)
\]

\[
\left\{ (A,A^s \oplus \hat{e}) : \begin{array}{c}
A \in \mathbb{Z}_q^{m \times n} \\
n \in \mathbb{Z}_q \\
\end{array} \right\} \cong \left\{ (A,u) : A^s \in \mathbb{Z}_q^{m \times n} \right\}
\]
Fully Homomorphic Encryption

Idea: outsource computation without revealing inputs!

\[E, Nyt \rightarrow Enc(X) \rightarrow Cloud \]

input \(x \)
output \(f(x) \)

Note that amount of communication is independent of \(|f| \)

Examples:
- PIR: input \(i \), output \(f(i) = DB[i] \)
- private ML: training, inference
- whatever you want to outsource!
Brief history

- **1978** - Rivest, Adleman, Dertouzous introduced a notion of FHE

 ↓ no unbroken candidates for many years

- **2009** - Craig Gentry (Stanford PhD student) introduces first construction
 - from new (non-standard) assumption
 - introduces “bootstrapping” idea (see next lecture)

- **2011** - Brakerski, Vaikuntanathan

 FHE based on LWE

- **2013** - Gentry, Sahai, Waters

 “3rd gen” FHE → today’s topic

Context: Diffie&Hellman introduced PK crypto in 1976
FHE syntax

KeyGen(1^n) \rightarrow sk

Enc(sk, M) \rightarrow ct

Dec(sk, ct) \rightarrow M

Eval(F, ct_1, ..., ct_n) \rightarrow \tilde{ct}

We will look at symmetric-key FHE. There is actually a generic transformation to get PK FHE.
FHE Properties

1) Correctness:
 \(\forall F : \{0,1\}^n \rightarrow \{0,1\}^k, \quad M_1, \ldots, M_n \in \{0,1\}^k \)

 \(sk \leftarrow \text{KeyGen}(\lambda), \) then with probability \(2^{\lambda} \):

 \[
 \text{Dec}(sk, \text{Eval}(F, \text{Enc}(sk, M_1), \ldots, \text{Enc}(sk, M_n))) = F(M_1, \ldots, M_n) + \text{usual encryption correctness}
 \]

2) Semantic security

 \(\forall M_i, \mu, \nu \in \{0,1\} \quad \text{Enc}(sk, M_i) \approx_c \text{Enc}(sk, \mu, \nu) \)

3) Compactness

 \(\forall F, sk \quad ct. \leftarrow \text{Enc}(sk, M_i) \)

 if \(\tilde{ct} \leftarrow \text{Eval}(F, ct, \ldots, ct, c) \)

 then \(|\tilde{ct}| = \text{poly}(\lambda) \leftarrow \tilde{ct} \text{ size is independent of } |F|, \lambda \)

Note: without compactness, any encryption scheme is also fully homomorphic!
Constructing FHE

Today: construct leveled FHE

\[\text{can only evaluate low-depth circuits} \]

Reason: ciphertexts have noise that grows with each gate in circuit. Eventually, the noise overwhelms the msg.

Next time: use bootstrapping to remove restriction on circuit dep.

\[\text{Idea: refresh ciphertexts to clear accumulated noise.} \]
Attempt 1 (insecure)

Secret key is a vector \(\vec{s} \)

\[
\text{Enc}(\vec{s}, \mu) \rightarrow \text{matrix } \mathbf{C} \text{ s.t. } \mathbf{C} \cdot \vec{s} = \mu \cdot \vec{s}
\]

\[
\text{Dec}(\vec{s}, \mathbf{C}) \rightarrow \text{compute } \mathbf{C} \cdot \vec{s} = \mu \cdot \vec{s} \text{ and find } \mu
\]

Homomorphism: if \(C_1, C_2, \ldots, C_n \) are encryptions of \(M_1, M_2, \ldots, M_n \)

Addition: \(\vec{C} = C_1 + C_2 \) \(\rightarrow \) \((C_1 + C_2) \cdot \vec{s} = C_1 \cdot \vec{s} + C_2 \cdot \vec{s} = M_1 \cdot \vec{s} + M_2 \cdot \vec{s} = (M_1 + M_2) \cdot \vec{s} \)

Eval("+", \(C_1, C_2 \))

Multiplication: \(\vec{C} = C_1 \cdot C_2 \)

Eval("\cdot", \(C_1, C_2 \))

\[
(C_1 \cdot C_2) \cdot \vec{s} = C_1 \cdot (C_2 \cdot \vec{s}) = C_1 \cdot M_2 \cdot \vec{s} = M_2 \cdot (C_1 \cdot \vec{s}) = M_2 \cdot M_1 \cdot \vec{s} = M_1 M_2 \cdot \vec{s}
\]

Eval("\cdot", \(C_1, C_2 \))

Can eval +, \(\cdot \rightarrow \) fully homomorphic!

Problem: Given \(\mathbf{C} \), it’s easy to find \(\vec{s} \) using Gaussian elimination =

idea: We can make Gaussian elimination hard by adding noise!

\[
\mathbf{C} \cdot \vec{s} = \mu \cdot \vec{s} + \vec{\varepsilon}
\]

Small noise
Attempt 2: Secret-key variant of Regev encryption

KeyGen(1^n):
\(\tilde{s} \in \mathbb{Z}_q^{n-1}, \ s \leftarrow (\tilde{s}) \in \mathbb{Z}_q^n \)

Enc(\(\tilde{s}, m\)):
\(A \in \mathbb{Z}_q^{n \times (n-1)}, \ \tilde{e} \in \mathbb{X}_q^n \)

\(output \ C = (A, A\tilde{s} + \tilde{e}) + M \cdot \text{In} \in \mathbb{Z}_q^{n \times n} \)

\[\text{pseudorandom by LWE} \]

Dec(\(\tilde{s}, C\)):
compute \(C \cdot \tilde{s} \), output \(0 \) if \(\| C \cdot \tilde{s} \|_\infty \) small
\(\{ 1 \) otherwise

\(C \cdot \tilde{s} = (A, A\tilde{s} + \tilde{e}) (\tilde{s}) + M \cdot \text{In} \tilde{s} \)

\(= A\tilde{s} - A\tilde{s} - \tilde{e} + M\tilde{s} = M\tilde{s} + \text{noise} \)

\(\tilde{s} \) is "approximate eigenvector" of \(C \)

with approx. eigenvalue \(M \).
Homomorphism:

Addition: \(\tilde{e} \leq C_1 + C_2 \)

\[
(C_1 + C_2)\tilde{s} = C_1\tilde{s} + C_2\tilde{s} = M_1\tilde{s} + \tilde{e}_1 + M_2\tilde{s} + \tilde{e}_2 = (M_1 + M_2)\tilde{s} + (\tilde{e}_1 + \tilde{e}_2)
\]

Noise doesn't grow too much, so we have additive homomorphism

(Would need to adjust Dec for \(M \notin \{0, 1\} \))

Multiplication: can we do \(\tilde{e} \leq C_1 \cdot C_2 \)?

\[
(C_1 \cdot C_2)\tilde{s} = C_1(C_2\tilde{s} + \tilde{e}_2) = M_2C_1\tilde{s} + C_1\tilde{e}_2
\]

\[
= M_2(M_1\tilde{s} + \tilde{e}_1) + C_1\tilde{e}_2
= M_1M_2\tilde{s} + M_2\tilde{e}_1 + C_1\tilde{e}_2
\]

Noise still reasonably small

Can be large \(\implies \) for \(M_2 \in \{0, 1\} \)

So we're still unable to multiply b/c noise grows with \(\|C\|_\infty \), which can be large.

Need a way to make ciphertext matrices have small norm.

Idea: represent number \(x \in \mathbb{Z}_q \) as a small-norm vector via binary decomposition!
For $x \in \mathbb{Z}_2$, define $\hat{x} = (x_0, x_1, \ldots, x_{\log_2 - 1})$ s.t. $x = \sum_{i=0}^{\log_2 - 1} x_i \cdot 2^i$.

In the inverse operation $\hat{x} \rightarrow x$, $\hat{x} \cdot \tilde{G} = x$.

Let G be the vector that recovers x from \hat{x}: $\hat{x} \cdot \tilde{G} = x$.

Note: we call it \tilde{G} for "gadget".
can extend (^) operation to vectors

\[\hat{x} \in \mathbb{E}_q \rightarrow \hat{x} = (x_0, x_0, \ldots, x_0, \log_q^{-1}, \ldots, x_{n_0}, x_{n_0}, \ldots, x_{n_0}) \in \mathbb{E}_{0,13}^{n \log_q} \]

\[\hat{x} = \hat{x} \cdot G \] is a linear transformation

where \(G \) is the matrix that recovers \(\hat{x} \) from \(\hat{x} \): \(\hat{x} \cdot G = \hat{x} \)

\[G = \begin{bmatrix}
1 \\
2 \\
\vdots \\
\log_q^{-1} \\
\log_q^{-1} \\
\log_q^{-1} \\
\vdots \\
1 \\
2 \\
\vdots \\
\log_q^{-1}
\end{bmatrix} \]
Finally, can also extend (\cdot) to matrices

$$C = \begin{pmatrix} \hat{z}_1 \\ \vdots \\ \hat{z}_m \end{pmatrix} \rightarrow \hat{C} = \begin{pmatrix} \hat{c}_1 \\ \vdots \\ \hat{c}_m \end{pmatrix}$$

And $C = \hat{C} \cdot G$ is still a linear transformation

(with gadget matrix G same as above)

Note: some sources refer to G as G^{-1} because it inverts bit decomposition

Now, let’s get back to FHE!
3rd (and final) attempt: the GSW scheme

KeyGen(1^n): \(\hat{s} \in \mathbb{Z}_q \) \(\hat{s} - (\hat{\xi}) \in \mathbb{Z}_q^* \)

Enc(\(\hat{s} \), M): \(A \in \mathbb{Z}_q^{m \times (n-1)} \) for \(m = \log q \)

\(\hat{e} \in \mathbb{X}_B \)

\[C = (A, A\hat{s} + \hat{e}) + \mu G \]

\(C \) Output \(\hat{C} \)

M\times M = M\times n\log q

Observe that \(C \hat{t} = \hat{C} \) has low norm since it is a \(\Theta(1) \) matrix!

Dec(\(\hat{s} \), \(\hat{C} \)): compute \(\hat{C} \cdot G \cdot \hat{s} = C \cdot \hat{s} \)

\[= (A, A\hat{s} + \hat{e}) \begin{pmatrix} \hat{s} \\ -1 \end{pmatrix} + \mu G \cdot \hat{s} \]

\[= \mu \cdot G \cdot \hat{s} - \hat{e} \]

if first element is small, output \(\mu = 0 \), Else, output \(\mu = 1 \).

Why first element?

\[(\mu \cdot G \cdot \hat{s})_1 = \mu \begin{pmatrix} 1 \\ 0 \ldots \ldots 0 \end{pmatrix} \begin{pmatrix} s_1 \\ s_2 \\ \vdots \\ s_{n-1} \\ -1 \end{pmatrix} \]

\[= \mu \cdot s_1 \text{ which is } \Theta(q) \text{ why? if } \mu = 1 \]
Let's see how this solves our multiplication problem:

Eval ($\hat{\cdot}$, \hat{C}_1, \hat{C}_2): output $\hat{C} = \hat{C}_1 \cdot \hat{C}_2$ ≤ all $m \times m$ matrices

Need to check $\text{Dec}(\hat{\cdot}, \hat{C}) ? M_1 \cdot M_2$

Proof: $\hat{C}_1 \cdot \hat{C}_2 \cdot \hat{G} \cdot \hat{S} = \hat{C}_1 \cdot (\hat{C}_2 \cdot \hat{G} \cdot \hat{S})$

$\hat{C}_2 = \hat{C}_1 \cdot (M_2 \cdot \hat{G} \cdot \hat{S} + \hat{e}_2)$

$= M_2 \cdot \hat{C}_1 \cdot \hat{G} \cdot \hat{S} + \hat{C}_1 \cdot \hat{e}_2$

$= M_2 \cdot (\hat{C}_1 \cdot \hat{G} \cdot \hat{S} + \hat{e}_2) + \hat{C}_1 \cdot \hat{e}_2$

$= M_1 \cdot M_2 \cdot \hat{G} \cdot \hat{S} + M_2 \cdot \hat{e}_1 + \hat{C}_1 \cdot \hat{e}_2$

Small if $M_2 \in \{0, 1\}$ Small Since $\|\hat{C}\|_\infty = \text{Small}$

What about addition? Could that make noise bigger?

Turns out it's sufficient to support the universal NAND gate:

\[\text{NAND}(a, b) = \text{NOT}(\text{AND}(a, b)) \]

Using NAND for other gates:

\[\text{NOT}(a) = \text{NAND}(a, a) \]
\[\text{AND}(a, b) = \text{NOT}(\text{NAND}(a, b)) \]
\[\text{OR}(a, b) = \text{NAND}(\text{NOT}(a), \text{NOT}(b)) \]
So how to build NAND?

\[\text{Eval}(\text{NAND}, \hat{C}_1, \hat{C}_2) : I_{m \times m} - \hat{C}_1 \cdot \hat{C}_2 \]

ct has \(\mu \) added along its diagonal, so \(1 - \mu \) is NOT mult over \(\mathbb{F}_0, 1 \) is AND

Yay! We have constructed an encryption scheme that can compute a universal gate over ciphertexts!

But this is a \textit{leveled} FHE, so we're not done yet.

Next time we'll see why this is not quite an FHE yet (noise growth) as well as a technique called \textit{Bootstrapping} that will allow us to get a full FHE scheme.