
Commitments and
the Random Oracle Model at)

Outline
-

' Commitments
. Definition
. Pedersen construction

←
the most controversial topic in crypto

• The Random Oracle Model

• Intuition
° Simple Applications
° Formalization
• A simple (yet useful) PRF

commitments
-

A deterministic algorithm: use :

- Commit (m
,
r) → c CoHer Committee

MEM
,
r ER

,
CEC red 92

messages 9 tnandomnesg
← commitments c c-Commit(m , r)

Properties : c-

Hiding: commitments do not reveal their message. (things happen)
Hm

,
m
' EM ¥

,
CE commit(m, r)

{commitcnn.rs :nER3x{commitCmi r) : r #R}
"
perfect, statistical, or computational

Binding : one cannot open a commitment to a different message
No efficient adversary can produce m

,
m

'

,
n

,
r
' such that commit Cm

,
r) = Commit (m'

, r
')

Formally : tf PPT A
,

(computational)
(m

,
r
,
mi

,
ri) c-Alg, hsj

Pr { man
. n

,
} -- neg'll d)

Commit(mid -- Comimitcm's n'

Not a commitment : AES. Encrypt(ten, m -- m)

(because Ln; AES . DecryptCk--r ',o=oD is an laterhate opening)

Pedersen commitments
#

Construction :

p of prime order p.

g. h , generators of Ca whose d-log is unknown .

Spaces : A- Ip
,

R- Ip ,
0=617

Commit (m
,
D= gmhr

Analysis
perfectly Hiding .

Proof : for any men, consider the distribution {Commit Cm, D:rER3.={gmhn : r ER}

n is uniform ⇒ h" is uniform ⇒ gmhn is uniform ⇒ distribution is independent of m.
Computationally binding :

Assumes d - log is hard
"

given he G,
hard to find xettp such that g×=h

"

d- log security game

r u all onCerchallenged Adversaria
x # Ttp

hegx# 7

Adversary#"
.

when X
'
= X

.

D-log assumption : All PPT adversaries win w/ only negligible probability .

Proof Advice: To break d - log , get two different repeinesentations of a group element.
For

e×agYPhK gun
. nm ⇒ gmcgxjr-gnicg.gr

'

⇒ mtxr -- m 't xr
' ⇒

1×=mjProof that d-loog hardness ⇒ pedersen binding :

Suppose that A breaks pedersen binding with non - negligible probability, ph

D?¥g¥;"ax
Adversary
#

-9£>

#
H

mix...
which is not negligible .

Pedersen commitments are Homeomorphic:

commit (m
,
r) . Commit (m'

,
r
') = gmhrgm.hr

'

^
Useful relationship = gmtm

'

hrtr
'

€*kz = Commitment
,
rtr ')

what if homomorphism is not needed ? Are there simpler commitments .

Yes
. . .

in the Random Oracle Model ! ! !
-

Random Oracle Model
-

Treat your
hash function H as a random function

.

H :X → Y defined by HK) t a random element of Y.

agrees with common intuition for hash functions
. Pervasive in real cryptographic implementations

Before the details
, simple applications:

1. simple commitments

Commit m
,
r) : = Hlm , r)

Hiding because H's output is uniformly random .

Binding because breaking binding requires finding cnn.rs# cm '

,
ri) such that Hcm ,

D= Hcm ;rD
,
a collision

,
which is hard for

a random function
.

Q : is Html a commitment? Or gm ? NO ! m may have insufficient entropy .

I
. Simple PRFS

.

f- (K
,
x) = H (k , x)

secure- since H is random
, H (ok, .) is random for all k.

Would be used as a PRF
,
if hash functions were faster than AES.

Elegant constructions ! What's the catch ?

Key Questions :

° How can we formalize this?

°

Why a "model" not an
"

assumption" ?

Why a
"model

"

:

Observation !
Cryptography is (epistemologically) part of mathematics

.
We model the world

,
and prove theorems within the model.

Our proofs so far have been in the standard model ← inaccurate
,
but usually close enough.
I

s

•weak assumptions
, e.g .

"

programs have private memory
"

see " whitebox crypto
"

Now we'll try out the random oracle model
-

→
°

a stronger assumption :
"
all parties have access.to H

,
a random function

, sampled at start-up .

1-1-3
f--O E- to

H # Functions[X. Y] Your cryptosystem is used,

accessing H as an oracle

leg . a look-up table .

Weakness : In our implementation, we do not sample H
.
The model is a LIE !
-

How to formalize ? : " all models are wrong,
° Let H :X → Y be a function (the random oracle) some models are useful "

• A-Hpartiesgetoaccess.totf
'

H
° Adversary sends H queries to the calhallenger ! I *

~

A⇒
q⑥HE)

' Challenger's responses must be a to a random function
.

A C ~

'

one example : for each query
Hlm)

,
C sets Hcm) # Y

(remembering previous answers)

A PRF security proof in the RO model
-

Broadly useful !

The PRF : HK, x) = H (x)
K

,
H :X → IG key - homeomorphic } see HWian

"oblivious" PRF
BLS signatures

Secure in the RO model
, assuming D DH

.

Decisional Diffie-Hellman CDDH) Assumption :
for G of order q, with generator g,

{ Cg" , g's ,gM) : x.yet-1g} Qc Ecg'ig,gZ) : x. y ,z #Ea,}

Assuming and adversary A for our PRF
, we

'll build an adversary B for DDH
.

AlAdd B DDHlngerCb)_
if b=o : X

, y , Z
Ig

e- ¥×¥E=gz
else:

1¥ J X=g×,Y=g's,Z=g×y

b't : random e
/
O

← bi b '

b'-- O : PRE - -

so
,
what does BRO do ? It imitates a random oracle.

BRO
-

←
maintains a map for H

f@ inquiries H@ m queries
-
-

a# Iq a #Iq .

set Him) ← Xd set Html -- Xd

send za send xx ← programing the RO
!

A if b -- I
,

- (indistinguishable from
y is now the secret keg random

, useful for proof

Observe:

if b- I
,
Ed= gxya = gxay = yay = Hayy

← the PRF

if b -- O
,
2
"
-

- gu =

uniformly random .

ergo , guessing PRF vs random is equivalent to guessing DDH triple v. random triple .

⇒ Band t have same advantage.

Philosophical Reflections on Ros . . .

-

• A model : heuristic but useful ga
decision about priorities . . .

° focusses us on design considerations other than hashing .

° controversial
,
but pervasive in implemented crypto

•

something that we (Stanford cryptographers) like

On Instantion
-

• Do not use a Merkle -Dannguard hash like SHA256 (length extension)

• SHA 3 (sponge - based) or
' SHA 2

,
carefully padded

