Commitments and the Random Oracle Model (!!)

Outline Commitments	
· Definition	
Pedersen Construction the most controversial topic i The Random Oracle Model	n crypto
 Intuition Simple Applications 	
· Formalization	
· It simple (yet useful) PRF	
<u>Commit ments</u>	
A deterministic algorithm! Wa	-
$\operatorname{Commit}(m, r) \to C$	Committee Committee
me M, r G R, c C messages 9 trandomness t commitments	ret R
Properties:	с - Commit(m, r)
Hiding: Commitments do not reveal their message	(things happen)
Чw,w'с,Ц	$(\underline{m}, \underline{n})$ $C \stackrel{?}{=} Commit(\underline{m}, \underline{n})$
{ (commit(m, r): r = R3 & { (commit(m(r)): r = R}	
Binding: One cannot open a commitment to a No efficient adversary can produce m, m', r,r	الم
Binding: One cannot open a commitment to a	different message
No efficient adversary can produce m, in', n, r	such that $Commit(m, n) = Commit(m', n')$
Formally: V PPT A, (computational)	
((m,r, m' r))= Allah); 7	
$Pr \rightarrow m \neq m' \wedge \gamma = neg(\lambda)$	
$\Pr \begin{cases} (m, r, m', r') \leftarrow A(g, h); \\ m \neq m' \land \\ Commit(m, r) = Commit(m', m) \end{cases} = negl(\lambda)$	
Not a commitment: AES. Encrypt(k=r, m=m)	
(because (r', ABS. Decrypt(k=r', c=c)) is an altern	te annalien
	are opening ,
Pedersen Commitments	
Pedersen Commitments Construction:	
Pedersen Commitments Construction:	
Pedersen Commitments <u>Construction</u> : G a group of prime order p. g,h, generators of G whom of bg is an known. Spaces: M=Zp, R=Zp, C=G	· · · · · · · · · · · · · · · · · · ·
Pedersen Commitments <u>Construction</u> : G a group of prime order p. g, h, generators of G whom of log is an known. Spaces: M=Zp, R=Zp, C=G	· · · · · · · · · · · · · · · · · · ·
Pedersen Commitments <u>Construction</u> : G a group of prime order p. g,h, generators of G whose dilog is an known. Spaces: M= Zp, R=Zp, C=G Commit(m,n) = g ^m h ⁿ	· ·
Pedersen Commitments <u>Construction</u> : G a group of prime order p. g,h, generators of G whose dilog is an known. Spaces: M=Zp, R=Zp, C=G Commit(m,n) = g ^m h ⁿ	· ·
Pedersen Commitments <u>Construction</u> : G a group of prime order p. g,h, generators of G whose dilog is an known. Spaces: M= Zp, R=Zp, C=G Commit(m,n) = g ^m h ⁿ <u>Analysis</u> <u>Perfectly Hidling</u> . <u>Prosf:</u> for any meM, consider the distrib	ation {(ommit(m,n):r∉R}= {g ^m h ^r : r∉R}
Pedersen Commitments <u>Construction</u> : <u>G</u> a group of prime order p. <u>G</u> , h, generators of <u>G</u> whose dilog is an Known. Spaces: <u>M=Zp</u> , <u>R=Zp</u> , <u>G=G</u> Commit(m, n) = <u>9</u> ^m h ^m	ation {(ommit(m,n):r∉R}= {g ^m h ^r : r∉R}

d-log security game $\frac{Challenger}{X \stackrel{\text{def}}{=} \mathbb{Z}p}$ $h = g^{\times} - \frac{g_{1}h}{g_{1}}$ Adversary Adversary wins when X' = X. D-log assumption: All PPT adversaries win w/ only negligible probability. Proof Advice: To brok d-log, get two different representations of a group element. For example: $g^{m}h^{r} = g^{m'}h^{r'} \Rightarrow g^{n}(g^{r})^{r} = g^{n'}(g^{r})^{r'} \Rightarrow m + xr = m' + xr' \Rightarrow \frac{m - m'}{r' - r}$ Proof that d-log hordness => pedesen bin ding: Suppose that A broks pedersen binding with non-nesligible probability, p $\frac{D - \log Challenger}{x \in \mathbb{Z}p}$ $n \in g^{x} - g_{1}h$ D-log Adversary $g^{n}h^{r}=g^{n'}h^{r'}$ Pr[x=x']=p which is not negligible Pedersen commitments are Homomorphics $Commit(m, r) \cdot Commit(m', r') = g^m hrgn' h^r'$ Useful relationship = g^{m+m} h^{r+r} (see more in welk 6) > = Commit(m+m¹, r+r¹) What if homomorphism is not needed? Are there simpler commitments. Yes in the Random Oracle Model!!

Random Ovaele Model	• • •	• • •	• •	
Treat your hash function H as a random function.	• • •	• • •	• •	•
$H: X \rightarrow Y$ defined by $H(x) \mapsto \alpha$ random element of Y.		• • •	• •	•
agrees with common intuition for host functions. Pervosive in real cyplographic implementations	· · ·	• • •	• •	•
Before the details, simple applications: 1. Simple commitments Commit(m,r):= H(m,r)	· · ·	· · · ·	• •	•
Hiding because H's output is uniformly random. Binding because breaking binding requires finding (m,r).≠ (m', r') such that H(m,r)=H(m',r'), a a random function.	collision,	w hich	is hord	for
Q: is H(m) a commitment? Or gm? NO! a may have insufficient entropy. 2. Simple PRFs.	· · ·	· · ·	• •	•
f(k, x) = H(k, x) Secure - Since H is randome, $H(k, \cdot)$ is random for all k.				0
Would be used as a PRF, if hash functions were faster than NES. Elegant constructions! What's the catch? Key Questions:				•
" How can we formalize this?		· · ·		•
· Why a "model". Why a "model". Observation: Cryptography is (epistemologically) part of mathematics. We model the world, and p	inui fila	Los initia	the mo	del.
o in the organity is chosen and have a man a reason of the organity when the				
Our proofs so for how been in the standard madel. I inaccu	rate, but	usually	close e	
Our proofs so for how been in the standard madel. In accur "weak assumptions e.g." programs have private memory". See "w Now we'll try out the random oracle model	rate, but Nhitebox	usually crypto`	close e	
Our proofs so for how been in the standard model. Inaccus "weak assumptions, e.g. "programs have private memory". See "w	rate, but Nhitebox	usually crypto`	close e	
Our proofs so for how been in the standard madel. In accur "weak assumptions e.g." programs have private memory". See "a Now we'll try out the random oracle model	rate, but Nhitebox	usually crypto`	close e	
Our proofs so for hove been in the standard model. Inaccus "weak assumptions e.g." programs have private memory" see "a Now we'll try out the random oracle model a stronger assumption: "all porties have accessfor H, a random fundion, s t=0 H = t=to H = functions[X,Y] Your cry ptosystem is used, accessing H as an aracle	rate, but Nhitebox	usually crypto`	close e	
Our proofs so for hove been in the standard model. In a ccur "weak assumptions e.g." programs have private memory" see "a Now we'll try out the <u>random oracle model</u> a stronger assumption: "all porties have a ccessfor H, a random fundion, s <u>t=0</u> H = t=to H = two cry ptosystem is used, accessing H as an aracle . (e.g. a look-up toble).	rate, but Nhitebox	usualy crypto start-up	close e	
Our proofs so for hove been in the standard model. In a ccur "weak assumptions, e.g." programs have private memory" see "a Now we'll try out the random onacle model a stronger assumption: "all porties have accessfo H, a random function, s t=0 t=0 $H \stackrel{1}{\leftarrow} Functions[X,Y]$ Your cryptosystem is used, accessing H as an aracle leg. a lookup tuble. Weakness: In our implementation, we do not sample H. The model is How to formalize?: "a	rate, but shitebox ample/ at	usually crypto stant-up ane (close e	

A PRF security proof in the RO model	• •	• •	•	•	•	•	•	•		•	•
The PRF: f(K,x) = H(x) ^K , H: X→G key-homomorphic an "oblivious" PRF } see BLS signatures	Hω	• •		•	•	•	•	•		•	•
Secure in the RO model, assuming DDH.			•	•	•	•	•	•		•	•
Decisional Diffie-Hellman (DDH) Assumption: for Geoforder 9, with generator 9,	• •	• •	•	•	•	•	•	•	• •	•	•
{ (9 [°] , 9 [°] , 9 [°]): ×, y ∉ Z ₄ } ≉ {(9 [°] , 9 [°]), 9 [°]) ×, y, z ∉ Z ₄ }			•	•	•	•	•	•		•	•
Assaming and adversary & for our PRF, we'll build an odversary B for	D	DH.									
-	• •					•	•	•	• •	•	•
$ \underbrace{\begin{array}{ccc} \underline{A} \ (PRF \ Adv.) \\ \underline{f \ @ m} \\ \underline{f \ @ m} \\ \underline{f \ @ m} \\ \underline{X = g^{x}, Y = g^{y}, Z = g^{z}} $	• •	• •		•			•	•	• •	•	•
$\frac{4 @ m}{X = 3^{x}, Y = 3^{y}, z = 3^{x}}$	• •	• •		•	•	•	•	•	• •	•	•
	• •	• •		•	•	•	•	•			•
b'=1; rondom Enb' 0b'	0 0										
	• •				•	•	•	•			
So, what does B^{RO} do? It imitates a random oracle.	• •	• •		•			•	•	• •	•	•
for maintains a map for H	• •		•	•	•	•	•	•		•	•
$\kappa \notin \mathbb{Z}_{q}$ $\kappa \notin \mathbb{Z}_{q}$			•	•	•	•	•	•		•	•
set H(m) = X ^k set H(m) = X ^k send Z ^m if b = 1 send X ^m if programing the RO 1 b is now the second trey random, aseful for prove						•				•	
Observe!	• •	• •				•					
if $b=1$, $Z^{K} = g^{XYK} = g^{XK}y = \chi^{K}y = H(x)^{Y}$ the PRF if $b=0$, $Z^{K} = g^{ZK} = (g^{K})^{Z}$ sumifically random.	• •	• •		•	•	•	•	•	• •	•	•
if $b=0$, $Z^{K=} = \int_{-\infty}^{2\pi} e^{-(g^{K})} e^{-(g^{K})$	ip le .	• •	•	•	•	•	•	•	• •	•	•
Philosophical Reflections on ROS.	• •	• •	•	•	•	•	•	•	• •	•	•
A model heuristic but useful for decision about priorities Pocuses us on design considerations other than hashing			•	•	•	•	•			•	•
· controversial, but pervasive in implemented crypto · something that as (stanford cryptographers) like	0 0	• •									
	• •					•					
On Instantion • Do not use a Merkle-Damguard host like SH18256 (length extension)	• •	• •	•	•	•	•	•	•		•	•
· SHA 3 (sponye-baued) or · SHA 2, carefully publicd	• •	• •	•	•	•	•	•	•	• •	•	•
	• •	• •			•	•		•			•
	• •						0				