CS355 Secture \#4:
Attacking deployed RSA.

Quick recap: Random Orader.
The Random Oracle model (Bellare 2 Rogamay, cCS '93) is a pragmatic tool for building cryptosystems.
\rightarrow but: security is heuristic when we instantiate!

Today: Attacking real world deployment.
MSB: the problem is usually not "the crypto"
(1) Reminder: RSA
[2] Mining Your Pis \& Q 's \rightarrow randomness failure
$\sqrt{3}$ Return of Coppersmith's Attack
\rightarrow "optimization" = ouch
(1) Reminder: RSA [RSA7F]

Let N be an integer with (secret) factorization

$$
\begin{aligned}
& N=p q \text {. } \\
& P K \triangleq(N, e) \xrightarrow{c}\left(\begin{array}{l}
\text { coprime to } \\
(p-1)(q-1)
\end{array}\right. \\
& \Rightarrow \text { usually } 2^{16}+1 \\
& S K \triangleq(p, q) \text { infirmationally } \\
& \text { (OR) } d=e^{-1} \bmod (p-1)(q-1)
\end{aligned}
$$

- Recall: PK defines a 1 permutation on $\mathbb{Z} \bmod N$:

$$
\operatorname{com}_{\substack{c} \leq s)}
$$

Without SK, the seems hard to invert for big N (think: N is >2048 bits).

- Given Sk, inverse is

$$
y \longmapsto y^{d} \bmod N
$$

$\Rightarrow \mathbb{Z}_{N}^{*}$ has order $\varphi(N)=(p-1)\left(q_{-1}\right)$ So $\left(x^{e}\right)^{d} \equiv x \bmod N$.

RSA "trapdoor" permutation gives:
\rightarrow Encryption (e.g. RSA-OAEP ${ }^{+}$ due to Shoup '01)
\rightarrow Signatures (e.g. RSA-PSS due to Bellare \& Rogaway '96)

Never use the RSA permutation directly for encryption or signing?
¿ thus is the most important Hem in today's lecture.
(2) Mining your $P_{s} \& Q_{s}$

- Heninger, Durumeric, Wustrow, Hadeermam \Rightarrow USENIX Security 2012
- Also: Lenstra, Hughes, Augier Bos, Kleinjuing, Wachter 2012
"Ron was wrong, Whit is right"
\Rightarrow ePrint \#2012/064.
Idea: if two RSA moduli $N_{1} \neq N_{2}$ have nontrivial $G C D$, we can foctor both.

$$
\left.\begin{array}{l}
N_{1}=p \cdot q_{1} \\
N_{2}=p \cdot g_{2}
\end{array}\right\} G \operatorname{GcD}\left(N_{1}, N_{2}\right)=p
$$ brak!

Strategy:

1. Collect millions of RSA Pes
2. Check for nontrivial GCDs
3. Profit?

Step 1: Scan entire IP. 4 address range for TLS certificates
Zakir's software, zmap, do ea this in minutes?
OR, maybe : collect RSA pubkeys from Git Hub? \Rightarrow millions are available...

Step 2: How do we check $\approx 2^{23}$ keys for pairwise GaDs?
\rightarrow Naively, 2^{46} pairs of keys $\Longrightarrow 30$ cPU-years \rightarrow already OK for NSA
\longrightarrow Better: GCD tree
Daniel Bernstein. "How to Find smooth parts of integers." Menu script, 2004 "on" hides fat re

- GCD costs $\tilde{O}(n)$ for $n-$ bit $\log _{\text {muts }}$
(. For k keys, naive cost is $\tilde{O}\left(k_{n}^{2} n\right)$
(Q. GCD tree reduces cost to on (kn) Concretely: years become days.

GCD tree idea:
(1.) Compute $\pi=\prod_{i=1}^{k} N_{k}$
\longrightarrow using a tree!

\Rightarrow total cost $\tilde{O}(k N)$
(2) Compute $r_{1}=\pi \bmod N_{1}^{2}$ (and so forth)
(3) $G C D\left(\frac{r_{1}}{N_{1}}, N_{1}\right)$ gives a common factor between $N_{1} \&$ some other N_{i} (etc.)

Why does (3) work?

$$
\pi=N_{1} N_{2} N_{3} N_{4}
$$

assume $N_{1}=p q_{1}, N_{2}=p q_{2}, \begin{gathered}\text { no other } \\ \text { common } \\ \text { factors }\end{gathered}$

$$
\begin{aligned}
& \Rightarrow \pi=\left(p q_{1}\right)\left(p q_{2}\right) \times \frac{N_{3} N_{4}}{L(\text { garbage })} \\
& \Rightarrow r_{1}=\pi \bmod N_{1}^{2} \\
&=p^{2} q_{1} q_{2}(\text { garbage }) \bmod N_{1}^{2} \\
& \Rightarrow r_{1} \\
& N_{1}=p q_{2}(\text { garbage }) \bmod N_{1}^{2} \\
&=p q_{2}(\text { garbage }) \\
& \Rightarrow G C D\left(\frac{r_{1}}{N_{1}}, N_{1}\right) \\
&\left.=G C D\left(p q_{2} \text { garbage) }\right) p q_{1}\right) \\
&=p \longleftarrow \text { got it? }
\end{aligned}
$$

How do we compute r_{i} ?
Naively, each $\frac{\pi \bmod N_{i}^{2}}{\text { costs } \tilde{O}\left(k_{n}\right)}$
$\zeta \pi$ is $k \cdot n$ bits?
\Rightarrow Computing all r_{i} costs $\tilde{O}^{\circ}\left(k^{2} n\right)$

\Rightarrow values shrink at each step
$\Rightarrow \tilde{O}(k n) \cos t$ in total?

Profit?
Heninger et al factored $>64000 \mathrm{keys}$ that they found in the wild!
\Rightarrow WHY ARE KEYS SO BAD?
\rightarrow IBM made devices that chose from a list of 9 possible prime factors
\rightarrow Embedded systems often have trouble generating' "good" randomness
\rightarrow at boot, devices generate keys before they have gathered sufficicut entropy
\rightarrow see also: Debian RNG fiasco 2008.
(3) Return of Coppersmith's Attack

Nemec, Sys, Svenda, Klinec, Matyas
ADM COS 2017
Idea: for RSA moduli $N=p q$ where p \& o have Special structure, we can factor N. well see what this means soon.
Why special structure?
\Rightarrow generate keys using fewer
random bits on embedded
devices (made by Infineon)
Result: millions of devices were recalled!? again!

The special structure:

$$
\begin{aligned}
& p=k \cdot M+\left(65537^{a} \bmod M\right) \\
& q=l \cdot M+\left(65537^{b} \bmod M\right)
\end{aligned}
$$

for a public constant M, a primorial - the product of the first is primes.
Aside: why this choice of M ? \longrightarrow guarantees $p \&_{q}$ are not divisible by small primes
\Rightarrow fewer primality tests, so faster key generation
\Rightarrow a tragic optimization

Intuition leads us astray:

$$
p=k \cdot M+\left(65537^{a} \bmod M\right)
$$

for 1024 -bit P, M is $\xrightarrow[\substack{\text { primorial } \\ \text { notation }}]{ } P_{126}^{\# \text { " }} 971$ bits.
$\Rightarrow k$ has ≈ 53 bits,
a has >100 bits
$>2^{128}$ choices for p
\Rightarrow what could go wrong?
Coppersmith's algorithm (Eurocrypt 96) lets us recover p, q from N in poly nomial time if we know $>1 / 2$ the bits of either?

Theorem (Coppersmith 196):
Let $N=p q$ be an RSA modulus. Let $f \in \mathbb{Z}_{N}[x]$ be a poly nomial of degree d.
Then we can find all integers x_{0} sit. $f\left(x_{0}\right)=0 \bmod p$ where $\left|\psi_{0}\right| \leqslant N^{1 / 4 d}$ in time polynomial in d and $\log _{2} N$.
Note: since We find all such solutions, there can only be poly $(d, \log N)$ of them.

Recall: $p=k M+\left(65537^{a} \bmod M\right)$
Attack: (1) guess a
(2) recover k w/ Coppersmith.

Step (2) first: given a,

$$
\begin{aligned}
& p=C_{1} \cdot k+C_{2} \\
& f(x) \triangleq C_{M} x+C_{2} \\
& \Rightarrow \frac{f(k)=p}{\text { Coppersmith? }} \equiv 0 \bmod \bmod p \\
&
\end{aligned}
$$

- So we will get candidate k values up to $N^{1 / 4} \quad p$ is 1024 bits, M is 971 bits \Rightarrow real $k \ll N^{1 / 4}$
- For each candidate k, try factoring N. (We know there wont be too many...)

Step (1): Guessing a's value. Really, guest $C_{2}=65537^{\circ}$ mad M \Rightarrow the constant term of $f(x)$.
How many values of C_{2} are there? Equivalently: what is the size of the subgroup of \mathbb{Z}_{M}^{*} generated by 65537 ?
\Longrightarrow If M were prime, could be as large as $M-1$ many
\Longrightarrow But M is smooth, factors so the subgroup is small (and its size is easy to compute).
So : compute size of subgroup r, then "guess" $0 \leqslant a<r$ and run step (2).

Optimizing the attack:

- M is "too big": Coppersmith gives solutions up to $N^{1 / 4}$, but we only need $\approx 53-$ bit k
Idea: pick M^{\prime} dividing M
this ensures
that we find that we find with
coppersmith
St. $1024-\log _{2}\left(M^{\prime}\right) \leq N^{1 / 4}$
\Rightarrow now $p=k^{\prime} M^{\prime}+65537^{a^{\prime}} \bmod M^{\prime}$ order of 65537 is smaller in $\mathbb{Z}_{M^{\prime}}^{*}$ than in \mathbb{Z}_{M}^{*} - fewer guesses
Trade -off: bigger M' makes Copgessuith faster but takes more guesser for C_{2} \Rightarrow optimize?

Results

Note: attack is trivially parallelized?
(How?)

Identifying bad moduli
Recall:

$$
\begin{aligned}
& p=k \cdot M+\left(65537^{a} \bmod M\right) \\
& q=l \cdot M+\left(65537^{b} \bmod M\right)
\end{aligned}
$$

So $N=p q \equiv 65537^{a+b} \bmod M$ A random RSA modulus has vanishingly small chance of having this form - $\ll 2^{-100}$
So: check if $N \bmod M$ has a discrete \log to the base 65337 .
\Longrightarrow This is easy because M is smooth (man ts small)
\Rightarrow Next lecture: discrete log!

