Interactive Proofs (IP) and Zero Knowledge (ZK)

Lost Time : Pairings	•
• C: C7 × C7 → C7 • Properties 1. Bilinear 2. Efficient	
2. Etticient 3. Non-trivial • Applications • signatures • signatures • 3-party key exchange • More! (see lecture 11)	
This time:	•
 I Interactive Proofs I Zero Knowledge I Zk-proof for HAMCYCLE 	•

What is a Proof?
Some one ("prover")
convinces someone else ("verifier
that something (" a statement"
is true
formalizing statements:
define languages: JS20,15
statements have form x E 2
Examples
"15 is biprime
15 e 2pq: primes p.gz

"Pythagorows' Theorem is true"
DYTHAG 62 true theorems 3
" \$ is a satisfiable boolean formula"
ØG { satisfiable formulas}
ØG SAT &= anbn-c
"φ is an unsatisfiable bodean formula
$\phi \in COSAT \phi = a A 79$
Observation some statements
(le.g. \$\$ ESAT) are easy to prove others (e.g. \$\$ cosAT) seem hard

Short, convention	nal proofs: "Np"
Defn. Prover (x)	Verifier (*)
	$\pi \rightarrow \mu$
	EO. 13 hand to find. easy to check! poly-time, deterministic verifier; poly-length)
Complexity cla	
L ENP if	J V such that
	XeL → V(X,T)=1 for some T
soundmess !	XEL > V(X,T)=1 for no TT

None formally LENP (=> 3 deterministic, polytime y. Yx xel > Ξπ ε {0,13 ροίγ(10) V(x,TT)=) Example: a, for SAT, IT is the assignment b. me believe costat & NP (CONP = NP assumption)

Interactive Provides LIP) [Micali Goldwarser]
with interaction? $\stackrel{P}{\Rightarrow} \stackrel{\vee}{\Rightarrow}$ => Still NP (see Hw)
with interaction + randomness?
 An IP, (P,v) is a pain of randomized machines V is efficient
· If (P,V)(x) denetre's V's output completeness:
$\forall x \in L P_{v} \left[(P, v)(x) = 1 \right] \ge \frac{2}{3}$
soundness: "perfect" if >1
$\forall x \in L \forall P^* P_n[\langle P, V \rangle(x) = 1] \leq \varepsilon$
"soundness error"
repeat to boost e.y. 13

Languages are in Which ID ; [Shamir '92][Shen '92] =) all of PSPACE! γ JOJ = PSPACE NP

Zero knowledge	Proofs
• IP where	V learns
xed and	nothing else
Examples:	
Prove a grap	h is 3-colorable
Examples: Prove a grap without revealing 2 today. Down	the coloning
2 today.	
prove a form	ula is SAI
without revealing	Inc assign
Prove you know	an unspent
coin's id with	aut revealing
which coin (· · · · · · · · · · · · · · · · · · ·
which coiri (=> 2(a)
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·

Formalizing ZK
Idea: the "how was school?" principle?
Pad: "How was schoul" Kid: "fine" - Doc could have guessed this -> if J can fake the transcript, protocol is 2K.
Defn: (P,v) is Zk if for all efficient U*, there exists an efficient Sim
$\{ View_{V}, [(P, V')(x)] \} \approx \{ Sim(x) \}$
statistically, computationally, perfectly tip: relax this defect by giving sim more inputs.
=) we'll show all I GNP have a ZK proof system!

HAMCYCLE
HAMCYCLE is the set of graphs with a hamiltonian cycle: a cycle that visits each vertex exactly once.
Vertices V= 21, 2,, n}
edges represented by adjaceny
matrix: SI i~j
Gij = 20 otherwise
ham cycle is an le IN ⁿ without repeats, such that Hic {1, 2,, n-13 ^G GR; lies =1

HAMCYCLE GNP: PLG)	V(G)
l = ? l	
	checks l
7 not a 2k proot	unless P=NP
HAMCYCLE -> directed H -> vertex cover -> C -> SAT -> NP [Code-Levin	`7]
So a Zk-prout fo	r HAMCYCLE
can be extended to	all of NP

HAACYCLE ZK Proof for P(G, l)V(G) Je permutation (V) $G' \leftarrow \sigma(G)$ Cijj - Comnit (Gij) di (commit (or (is)) show commits b= {0,13 ط show cycle if b=0: open all commits if b= 1: open the commits - check all openings of G' which show the cycle o(l) -if b=0: check o is a permutations if b=1: check that openings form a HAACYCLE

Avalysis
completieness:
1.0 is always a permutation
2. Lis always a cycle
3. commitments are always legit
Soundness:
T C & HWM(YCLE, NO Dermanand
of it has a HAMCRUE either
so the permutation is invalid
=> 50% chance or jan)
=) repeat to improve

Zero-knowledge: Sim(G): 6 = {0, 13 if b=0: commit to random per mutation of G else: commit to random permutation of an n-vertex cycle graph. b = V (commitments) if $b \neq b$: - fixes distribution restart for V^{+} which does not chose $b \geq 10, 13$ if b = 0: if b = 0open commits cycle commitments if b = 1open

Need to show $D \approx D'$ } (G, (c.,, ..., c.n, n), (d., ..., d.n), b, openings) these are all of in D, D' (conditioned on prior entries) need to show there are sin D, D' -> use commit ment hiding & n2+ n hybrids -> each hybrid replaces one commitment

Recap: 10 NP-proofs [] Interactive Proobs 12] IP: Zero knowledge [3] ZK for all of NP (via HAMCYCLE + commitments) Rest of unit: other IP properties Tues: Proof of knowledge Thurs: Non-interactivity Tues thurs: Succinctness