Interactive Proofs (IP) and Zero knowledge (ZK)

Lost Time: Pairings

- e: $G_{T} \times G^{\rightarrow} \rightarrow G_{T}$
- Properties

1. Bilinear
2. Efficient
3. Nontrivial

- Applications
- signatures
- 3-party key exchange
- more! (see lecture 11)

This time:
(II) Interactive Proofs
[1] zero knowledge
(3) $2 k$-proof for HAMCYCLE

What is a Proof?
some one ("prover")
convinces someone else ("verities) that something ("a statenut") is true
formalizing statements:
define languages: $\mathcal{L} \leq\{0,1\}^{*}$
statements have form $x \in \mathcal{L}$
Examples
"Is is biprime"

$$
15 \in\{p q: \text { primes } p, q\}
$$

"Pythagoras' Theorem is true"
PYTHAG $\in\{$ true theorems $\}$
" ϕ is a satisfiable boolean formula"
$\phi \in$ \{satisfiable formulas\}

$$
\phi \in \text { SAT } \quad \phi=a \wedge b \wedge c
$$

" ϕ is an unsatisfiable bodean formula"
$\phi \in \cos A T \quad \phi=a \sim r a$
Observation some statements (eeg. $\phi \in S A T$) are easy, to prove others leg. $\phi \in \cos A T$) seem hard...

Short, conventional proofs: "NP" Devin.

Proven (x)

1. π may be hand to find.
2. It must be easy to check!
(poly-time, deterministic verifier, poly -length)
Complexity class "NP":
$\mathcal{L} \in N P$ if $\exists \mathcal{V}$ such that completeness: $x \in L \rightarrow \nu(x, \pi)=1$ for some π
soundness: $x \notin L \rightarrow V(x, \pi)=1$ for no π

More formally:
$\mathcal{L} \in N P \Leftrightarrow \exists$ deterministic, poly time V.

$$
\begin{aligned}
& \forall x \quad x \in \mathcal{L} \Leftrightarrow \\
& \exists \pi \in\{0,1\}^{p a r)}(m) \\
& V(x, \pi)=1
\end{aligned}
$$

Example:
a. for SAT, π is the assignment.
b. we believe cost \&NP ($\operatorname{coN} P \neq N P$ assumption)

Interactive Proofs (IP)[Micali
with interaction?
\Rightarrow still NP (see HW)
with interaction + randomness?

- An IP, (P, V) is a pain of randomized machines
- V is efficient
- If $\langle P, V\rangle(x)$ denote's V's out pat completeness:

$$
\forall x \in L \quad P_{p, v}[(P, v)(x)=1] \geqslant 2 / 3
$$

soundless: "perfect" if $\geqslant 1$

$$
\forall x \notin \vee P^{*} \underset{V}{\operatorname{Pr}}[\langle P, V)(x)=1] \leq \varepsilon
$$

"soundness error" repeat to boot ecg $1 / 3$

Which Languages are in IP?
[Shamir '92][Shen '92]
\Rightarrow all of PSPACE!

Zero knowledge Proofs

- IP where V learns $x \in \mathcal{L}$ and nothing else
Examples:
Prove a graph is 3 -colorable without revealing the coloring
${ }^{2}$ today.
Prove a formula is SAT without revaliys the assignment
Prove you know an unspent coin's id without revealing which coin ($\Rightarrow 2$ cash)

Formalizing 2K
Idea: the "now was school?" principle?
Dad: "How was school"
Kid: "fine" r Dad could have guessed \rightarrow if ν can fake the transcript, protocol is 2 K .
Defn: (P, v) is $2 k$ if for all efficient ν^{\prime}, there exists an efficient sim

$$
\left\{V_{i e \omega_{v}}\left[\left[P, v^{*}\right\rangle(x)\right]\right\} \approx\{\operatorname{sim}(x)\}
$$

statistically, computationally perfectly
tip: relax this defy by giving sim more inputs.
\Rightarrow Well show all \mathcal{L} GNP have a ZR proof system!

HAMCYCLE
HAMCYCLE is the set of graphs with a hamiltonian cycle: a cycle that visits each vertex exactly once.

Vertices $V=\{1,2, \ldots, n\}$ edges represented by adjacency matrix:

$$
G_{i, j}= \begin{cases}1 & i \sim_{j} \\ 0 & \text { otherwise }\end{cases}
$$

ham cycle is an $l \in \mathbb{N}^{n}$ without repeats. such that ${\underset{\text { repeats }}{1}, \text { such }}^{\forall i \in\left\{1, L_{1}, \ldots, n-1\right\}^{\text {that }}} G_{l_{i}, l_{i n}}=1$

HAMCYCLE GNP:
\qquad
τ not a $2 k$ proot unkess $P=N P$
HAMCYCLE is NP-hard [Karp '72]
HAMCYCLL \rightarrow directed HAMCYCLE
\rightarrow vertex cover \rightarrow clique
\rightarrow SAT
\rightarrow NP [Cook-Levin 7 7]
So a $2 k$-proof for HAMCYCLE can be extencled to all of NP.

ZK Proof for HAMCYCLE

$$
P(G, l) \quad V(G)
$$

σ^{k} permutations (V)

$$
G^{\prime} \in \sigma(G)
$$

$$
C_{i, j}=\text { Commit }\left(G_{i j}^{\prime}\right)
$$

$$
\begin{aligned}
& C_{i j}=\text { cominit }\left(G_{i j}\right) \text { shawnits } \\
& d_{i} \in \text { Commit }(\sigma(i))
\end{aligned}
$$

$$
b^{\frac{3}{2}} \leq\{0,1\}
$$

show
if $b=0$:
open all commits
if $b=1$:
open the commits
of G^{\prime} which
show the cycle oc)

- check all openings
- if $b=0$: check σ is a permutations if $b=1$: check that openings form a HAMCYCLE

Analysis
completeness:
$1 . \sigma$ is always a permutation
2. l is always a cycle
3. commitments are always legit soundness:
if $G \notin H M M C Y C L E$, no permutation of it has a HAMCRCLE either
so the permutation is invalid or the cycle is invalid
$\Rightarrow 50 \%$ chance of getting caught.
\Rightarrow repeat to improve
zero-knowled ge:
$\sin (G):$
$b^{\prime} \xlongequal{5}\{0,1\}$
if $b=0$:
commit to random permutation of G else:
commit to random permutation of an n-vertex cycle graph.
$b \in V^{*}$ (commit mints)
if $b \neq b$:
restart \leftarrow fixes distribution
if $b=0$:
open commits
if $b=1$:
open cycle commitments

Need to show

$$
\begin{gathered}
\{\operatorname{view} \operatorname{vr}[(P, V)(x)]\} \underset{c}{ }\{\operatorname{Sim}(G,)\} \\
D \approx D^{\prime} \\
\left\{\left(G,\left(c_{1, i}, \ldots, c_{n, n}\right),\left(d_{1}, \ldots, d_{n}\right), b, \text { peenirss }\right)\right.
\end{gathered}
$$

- these are all \neq in D, D^{\prime} (conditioned on prior entries)
- need to show these are \approx in D, D^{\prime}
\rightarrow use commit meant hiding \& $n^{2}+n$ hybrids.
\rightarrow each hybrid replaces one commitment

Recap:
(0) NP -proofs
(I) Interactive Proofs
(2) IP: zero knowledge
(3) ZK for all of NP Cia hancycle + commitments)

Rest of unit: other IP properties
Tues: Proof of knowledge
Thurs: Non-inter activity
Tues thurs: Succinctness

