
Recapizeraknowledgeproofs
Language Logo,y*
PG) thx)
-

e-

÷
-

t

accept Ireject

① Completeness : AXEL Parker> (x) - accept] ? I- e

(2) Soundness : tx¢L VP
't Prkp't, v) = accept] EE

③ Zero knowledge : VPPTV
*

I PPT Sim St AXEL

{ Viewy* KPN"Xxl] } To { Sim }

theorem : LOWE ⇒ Npc Zk

Proofs We saw a 2K proof for HAMCYCLE

Applications of Ek :
③

d) Identification protocols (& signatures)
ex : prove to server you know

"password " ↳ next lecture
without revealing it .

(2) Enforce honest behaviour in protocols
b

schematically : we will talk about

④ MPC in 2 weeks

! 3
④

,
→ ④

L

wants to prove
that messages sent follow protocol
without disclosing secrets

Proofofknowledgei
Soundness property assures verifier that some NP

statement is true
.

Sometimes we want a stronger guarantee :
that the prover

" knows " a witness to

the statement
.

Each NP language L has associated

relation R sat
. XEL⇒ Fw s.tk,wkR

Example : L - all hamiltonian graphs
-

R - f (G, ham. path in G) }
Soundness - if V accept x w. hp ⇒ XEL

Proof - of- knowledge - if V accepts x v.hp
⇒ Prover "knows " w

These are not equivalent : example :
R -- { (N, p) : pl N , pH,N}

How can we prove that P must know w ?

f- Cannot look for w in the code of P)
can EXTRACT w by (cleverly) running P

±:ii::::::::¥¥:iPraxisER : w ←ETIx)) > PrKPI v>GHI - ,K
L L

E can run p* knowledge
error

Schnorrlsprotocol
Fix G cyclic group of order of , g generator .

P is given xeZq , h=g× .

V is given h
.

P wants

to convince verifier it knows xEfq Sit . 9¥ h .

L= { he G / Ix C- 21g : h -- g
" }

R = { (h , x) the G , xEIq sit h=g×}
Since every group element is in L , proving that
he L is trivial That's why it only makes sense to talk

about a proof of knowledge for R .

PC* 21g , h .-y
'EG) V(he G)
-

-

r # 2g u-- gr
→

c-
CE"Zg

check

gZ=u - he

Claim Schnorr's protocol is a Zkgpok of DLOG
.

Zero knowledge proof of knowledge

Proofi d) Completeness : u . HE gr.fgxk.gr#=gZ
.

(2) Honest -verifier '

zero knowledge :

we construct a simulator S
.

S(h The basic idea :

2- E
"

Iq ,
C # Zg f s runs the protocol

"
in reverse

"

,
which

u← 94ha allows it to forge

output (u, c, z)
transcript w/o knowing X.

Claim f Sch) } a {View, v> Ch))
d
lf .

honest verifier Yg' : K£4
prfslht-fu.cat#rLViewvSPNllhl=l49ZD--/o:o.w

.

ooo

why is this only HV ZK ? a malicious verifier doesn't
= have to choose at random .

we will discuss malicious -verifier ZK later .

(3) Proof of knowledge
Suppose P* is a (possibly malicious) prover
that convinces honest verifier up . E

.

And for the sake of simplicity , suppose E- 1
(See Boneh - Shoup 19.1 for general case.)

Let E be the following extractor :
1

.

Run P* to obtain initial message u

2
.

Send a random challenge c
,
#' 21g , get back 2,

3
.

Rewind the prover to its state after the 1st message.

a. Send it another random challenge a # 21g , get Zz
5. Output x

,

C- 21g

Analysis : since P
't

succeeds up.
I
,
we know that

of '- = uh" g! u- h
"

Therefore : g%c, -. 9% , ⇒ of '
- "

Ig
"""

⇒ × .

.

Digest :

It might seem that Pok and 2K are perhaps
contradictory : if E can learn w from P

why can't the verifier V ?
*

a

:÷:÷÷÷:÷÷÷÷÷÷÷÷÷÷:÷i:÷÷
E can rewind P

't
.-

HV2K⇒2
Problem : V can choose c not uniformly random .

Strawman : Run P to get first msg U
.

Feed u to V to get c
Run Sim to get In ' , c, z) (probably n'tu)

Problem : c can depend on u . So In :c ,24 doesn't

look like real transcript .

Solution : V first commits to c , then V can't

change c depending on u .

Sigma protocol-
A more general view of Schnorr's protocol .

.

Pdx ,WIER) Vfx)
-

-

t ("commitment
")
- c# C
c (" challenge")
- challenge is
z (" response

") chosen uniformly→

at random

outputs accept/ reject
as a deter . function of

Requirements Htc GZ)

d) Completeness (perfect)

(2) Special soundness : there exist an eff.
extractor E that given two accepting
transcripts Lt , c, t) , Ct ,ctz

') sit . Cfc;
outputs w set

. KNIER
↳ can show Sp . Soundness⇒Pok with K - HCl .

(3) Special Honest Verifier ZK :

There exists an efficient Sim that takes

as input (x, c) and sit :

d) Sim (x,c) outputs t,Z s
. t (t, c , z)

is an accepting transcript for X .

(2) for all (x , w) ER

{ Chez) : Esimcx.ci/j--fviewvlPCx.uksUxD)
identically distributed

why Sigma Protocols are interesting ?
• Efficient ZK proofs for many interesting
languages . (about commitments, encryptions.)

• Can build efficient identification protocols
& signutureschemes.es Next lecture

Compositionofsprotocds
Given E- protocol for 12=1444 } a

want to construct E- protocols for .

• Proving AND of statements
(Yo , Wo) ER

Ram, = { 4×01%1,14 ")) : Cx. ,u.) ER })
v

⇒ just run protocols in parallel can also

(can even use same challenge) do AND/OR

• Proving OR of statements
of diff. relations

Ron -- llcxoixel , aw) : Lxiii's"Epyf
This is much trickier . Basic idea :

h
Verifier sends challenge C €191)
Prover can choose co , Ce St Co⑦G=C
and then create one real proof and one
simulated proof . Verifier doesn't know which is which ,

Pof Ho, xD , lb, u)) Vo, Xd
-

-{
Suppose to lie . prover knows witness to

R)
c ,
C

Run Sima for R , to get

(ti , ca , za) valid transcript

to ← & Koil
touts

co← C④ Ce

'¥

Send co to P

to get response Zo

check

(Xo, to , Co, Zo)
(xn , the ④Co , ta)

Completeness - immediate
SHVZK - we construct Simon :

choose c # 2g , co E
"
21g , set Cy ← Co C

We can now use Sim for R to

compute :

(to , Zo) ← Sim (Xo , co)

(ti , Zale Simha , a)

output (Ito , til , Hazel)
Special Soundness
Given (Xo,xn) & two transcripts

(Cto ,ti) , c , (co, zonal) & Utah), d, Kd , Zo
' Ai))

s . t . Cfd

Define Cy -- C⑦Co Cia c'④Cf

Then either co
' # co or Ci EG

.

(since CEC
'

)

suppose w.l.o.y.co
'
Eco

Then can use extractor for R

to extract Wo from

woc-Extfxofto.co , Zo) ,
Lto
, Cotto

'

))
and then output witness

(O, Wo) for Ron
.

