
CS 355: Topics in Cryptography Spring 2022

Problem Set 1

Due: Friday, 8 April 2022 (submit via Gradescope)

Instructions: You must typeset your solution in LaTeX using the provided template:

https://crypto.stanford.edu/cs355/22sp/homework.tex

Submission Instructions: You must submit your problem set via Gradescope. Please use course code
862WDX to sign up. Note that Gradescope requires that the solution to each problem starts on a new
page.

Bugs: We make mistakes! If it looks like there might be a mistake in the statement of a problem, please ask
a clarifying question on Ed.

Problem 1: True/False [7 points].

(a) Which of the following are true in a world where P=NP.

i Secure PRFs exist in the standard model.

ii Secure PRFs exist in the random oracle model.

iii The one-time-pad cipher is secure.

(b) If there exists a PRG with 1-bit stretch, there exists a PRG with n800-bit stretch (where n is the length
of the PRG seed).

(c) Let F : K×X →X be a pseudorandom permutation. Then:

i fk=0(x) := F (0, x) is (always) a one way function.

ii fk=0(x) := F (0, x) is (always) a one way permutation.

iii fx=0(k) := F (k,0) is (always) a one way permutation.

Problem 2: Merkle Puzzles [15 points]. In lecture, you saw Merkle’s key-exchange protocol. That
protocol uses a hash function H : Zλ2 → {0,1}log2λ, where λ ∈Z+ is the security parameter. We model H as
a random oracle.

Merkle’s key-exchange protocol works as follows:
1. Alice picks integers a1, . . . , aλ←R Zλ2 and publishes H(a1), . . . , H(aλ).
2. Bob picks integers b1, . . . ,bλ←R Zλ2 and publishes H(b1), . . . , H(bλ).
3. Alice and Bob find the least i , j ∈ {1, . . . ,λ} such that H(ai ) = H(b j ). If no such pair exists, output

“fail.”
4. Alice outputs ai as her shared secret with Bob. Bob outputs b j as his shared secret with Alice.

While Alice and Bob each make λ queries to H , we argued in class that any successful eavesdropping
attacker must makeΩ(λ2) queries to H .

https://crypto.stanford.edu/cs355/22sp/homework.tex
https://gradescope.com/


(a) There is some chance that Alice and Bob agree on indices i and j in Step 3 such that H(ai ) = H(b j )
but ai 6= b j . First, explain why this is problematic in the context of a key-agreement protocol. Next,
show that the probability of this bad event is negligible.

(b) Prove that Alice and Bob successfully agree on a shared secret with probability at least 1/100. Make
sure that your argument accounts for the failure event from part (a).
[Hint: You may use the “Birthday Bound” in Appendix B.1 of the Boneh-Shoup book.]

(c) Show that it is possible to reduce the failure probability to some quantity negligible in λ while still
keeping the total communication between Alice and Bob Õ(λ). (Recall that Õ(λ) is notation for
λ ·polylog(λ).)

(d) As described, Merkle’s scheme requires total communication 2λ log2λ bits. Describe how to reduce
the total communication to λ log2λ+o(λ) bits, without changing the protocol’s failure probability or
security properties.

(e) Research problem [+100 points]. If we take λ≈ 230 to get security against attackers running in time
λ2 ≈ 260, then Merkle’s protocol requires a huge amount of communication—around ten gigabytes.
Show that it is possible to reduce the communication of Merkle’s scheme to Õ(1) while: (a) Alice and
Bob still run in time Õ(λ) and (b) the protocol maintains security against attackers running in time
o(λ2). Even constructing a scheme with communication complexity Õ(λε) for any ε< 1 would be
very interesting. Your solution must somehow skirt the known impossibility results.

(f) Research problem [+1000 points]. Construct a key-agreement protocol from a one-way function
(e.g., AES) in which Alice and Bob run in time λ and the best attack runs in time super-polynomial
in λ. We have no idea how to construct such a protocol, but we also have no way to rule out the
existence of such a protocol either. A famous result of Impagliazzo and Rudich implies that any such
protocol would likely not make “black-box” use of the one-way function.

Problem 3: Key Leakage in PRFs [5 points]. Let F be a secure PRF defined over
(
K,X ,Y

)
, where

K = X = Y = {0,1}n . Let K1 = {0,1}n+1. Construct a new PRF F1, defined over
(
K1,X ,Y

)
, with the

following property: the PRF F1 is secure; however, if the adversary learns the last bit of the key then the
PRF is no longer secure. This shows that leaking even a single bit of the secret key can completely destroy
the PRF security property.
[Hint: Try changing the value of F at a single point.]

Problem 4: P and NP [5 points]. Show that the existence of any one-way function implies P 6=NP.
Recall: if P=NP, then for any an deterministic, efficient algorithm A(x, w) → {0,1} there is a deterministic,
efficient algorithm B(x) → {0,1} that computes whether ∃w. A(x, w) = 1

Problem 5: Vector Commitments [5 points]. In this problem we consider vector commitments: commit-
ments to vectors which can be opened to one index at a time.

The classic construction vector commitment scheme is the Merkle tree, which is parameterized by
a hash function H : X ×X → X . The core of this construction is a hash tree, as shown in Figure 1.
Each internal node in the tree represents an evaluation of the hash function over the child nodes. The
Commit procedure evaluates the hash tree, returning the root at the commitment. The IdxOpen procedure

https://eccc.weizmann.ac.il/report/2018/031/
https://cseweb.ucsd.edu/~russell/secret.ps


c

h3,0

h2,0

h1,0

x0 x1

h1,1

x1 x2

h2,1

h1,2

x4 x5

h1,3

x6 x7

Figure 1: A Merkle tree

produces the siblings along a path (e.g., the blue nodes, for x4), and the IdxVerify checks the hash
evaluations along the path.

More precisely, the Merkle tree vector commitment scheme is defined by three algorithms:

• Commit(d ∈N, x ∈X 2d
) →X :

for i ∈ {0,1, . . . ,2d −1}: h0,i ← xi

for ` ∈ {1,2, . . . ,d}, for i ∈ {0,1, . . . ,2d−`−1}: h`,i ← H(h`−1,2i ,h`−1,2i+1)

return hd ,0

• IdxOpen(d ∈N, i ∈N, x ∈X 2d
) →X d :

compute h`,i as in Commit

for ` ∈ {0, . . . ,d −1} : pi ← h`,((iÀ`)⊕1)
1

return (p0, . . . , pd−1)

• IdxVerify(d ∈N, i ∈N, x,∈X ,c ∈X , p ∈X d ) → {0,1}:

h0 ← x

for ` ∈ {1, . . . ,d} :

j ← i À (`−1)

if j is odd: h`← H(p`−1,h`−1)

else: h`← H(h`−1, p`−1)

return hd
?= c

A vector commitment scheme is index binding if for all d ∈N and for all efficient adversaries A,

Pr
{
IdxVerify(d , i , x,c, p) = 1∧ IdxVerify(d , i , x ′,c, p ′) = 1∧x 6= x ′ : (c, i , x, p, x ′, p ′) ←A(d ,λ)

}= negl(λ)

where λ is the security parameter of H . A hash function H is collision resistant if for all efficient adversaries
A,

Pr
{

H(x, y) = H(x ′, y ′)∧ (x, y) 6= (x ′, y ′) : (x, y, x ′, y ′) ←A(λ)
}= negl(λ)

(a) Please prove that Merkle tree vector commitments are index binding if H is collision-resistant.

1Here, À is logical right shift and ⊕ is bitwise XOR, as in C. That is, x À y denotes bx/2y c and x ⊕ y denotes the integer with
binary representation equal to the bitwise XOR of the binary representations of x and y .



(b) Extra Credit [2 points]. Is a Merkle tree commitment hiding in the random oracle model? If so, prove
it. If not, briefly explain why, modify the scheme to make it hiding in the random oracle model, and
prove that the modification is hiding in the random oracle model. Note: A few different “hiding”
properties can be formalized for vector commitments. You should consider whether the commitment
itself is hiding—you need not consider opening proofs.

Problem 6: Our Favorite PRF [10 points]. In class we saw the PRF F (k, x) = H(x)k and were told that it
has many useful properties. In this problem, we will explore two applications of this PRF.

(a) Let F :K×X →Y be a PRF defined over groups (K,+) and (Y ,⊗), where + and ⊗ are the respective
group operations in those groups. We say F is key-homomorphic if it holds that

F (k1 +k2, x) = F (k1, x)⊗F (k2, x).

Is the PRF F (k, x) = H(x)k defined with a random oracle H : X → G (where G is a group of prime
order p) a key-homomorphic PRF? Please prove your answer one way or the other.

(b) Key rotation is a common problem encountered in cloud storage: how to change the key under which
data is encrypted without sending the keys to the storage provider? A naive solution is to download
the encrypted data, decrypt it, re-encrypt it under a new key, and re-upload the new ciphertext. We
will now see how this process can be made more efficient with a key-homomorphic PRF.

Suppose you have a ciphertext c made up of blocks c1, ...,cN that corresponds to a message m =
(m1, ...,mN ) encrypted under a key k1 using a key-homomorphic PRF F in counter mode, i.e., ci =
mi ⊗F (k1, i ). Now you want to rotate to a key k2. It turns out you can send the storage provider a
single element kupdate ∈K which it can then use to generate c ′, an encryption of m under k2. Please
tell us how you can compute kupdate and how the storage provider can use kupdate and c to compute c ′.

(c) An oblivious PRF is an interactive protocol between a client who holds a message x and a server who
holds a key k. The protocol allows the client to learn the PRF evaluation F (k, x) without the server
learning anything about x. Oblivious PRFs are used in many advanced crypto protocols.

It turns out that there is an oblivious PRF protocol for the PRF F (k, x) = H(x)k . Please show us how a
client holding x and a server holding k can interact so that the client learns H(x)k while the server
learns nothing about x. You don’t need to prove security, we would just like to see the protocol.


	Problem 1: True/False [7 points].
	Problem 2: Merkle Puzzles [15 points].
	Problem 3: Key Leakage in PRFs [5 points].
	Problem 4: P and NP [5 points].
	Problem 5: Vector Commitments [5 points].
	Problem 6: Our Favorite PRF [10 points].

