
CS 355: Topics in Cryptography Spring 2022

Problem Set 2

Due: Friday, 22 April 2022 (submit via Gradescope)

Instructions: You must typeset your solution in LaTeX using the provided template:

https://crypto.stanford.edu/cs355/22sp/homework.tex

Submission Instructions: You must submit your problem set via Gradescope. Please use course code
862WDX to sign up. Note that Gradescope requires that the solution to each problem starts on a new
page.

Bugs: We make mistakes! If it looks like there might be a mistake in the statement of a problem, please ask
a clarifying question on Ed.

Note: The following two documents may help with number theory background on this assignment.

1. https://crypto.stanford.edu/~dabo/cs255/handouts/numth1.pdf

2. https://crypto.stanford.edu/~dabo/cs255/handouts/numth2.pdf

Problem 1: For each of the following statements, say whether it is TRUE or FALSE. Write at most one
sentence to justify your answer [7 points].

1. Let p, q , r , and r ′ be distinct large primes. Let N = pqr and N ′ = pqr ′. Assume that there does
not exist an efficient (probabilistic polynomial time) factoring algorithm. Say whether each of the
following statements are TRUE or FALSE.

(a) There is an efficient algorithm that takes N as input and outputs r .

(b) There is an efficient algorithm that takes N and N ′ as input and outputs r .

(c) There is an efficient algorithm that takes N and N ′ as input and outputs q .

2. Let G be a group of prime order q . Consider the following special cases of the discrete-log problem.
For each of them, say TRUE if an efficient (polynomial in log q) algorithm for the special case can be
used to construct an efficient algorithm for the general case of the discrete-log problem, and FALSE
otherwise.

(a) An algorithm that correctly outputs the discrete log only when it is smaller than q/log q .

(b) An algorithm that correctly outputs the discrete log only when it is smaller than log q .

3. Given g ∈G and a positive integer n, a generic group algorithm requiresΩ(n) time to compute g n .

4. Let G be a cyclic group of prime order q with a generator g ∈ G and H : G→ {1,2,3} be a random
function. A walk on G defined as x0 ←R G and xi+1 ← xi ·g H(xi ) collides in O(

p
q) steps in expectation

(i.e., if icol = min{i ∈N : ∃ j < i s.t. xi = x j }, then Ex0,H [icol] ≤O(
p

q)).

https://crypto.stanford.edu/cs355/22sp/homework.tex
https://gradescope.com/
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Problem 2: Coppersmith Attacks on RSA [15 points]. In this problem, we will explore what are known
as “Coppersmith” attacks on RSA-style cryptosystems. As you will see, these attacks are very powerful and
very general. We will use the following theorem:

Theorem (Coppersmith, Howgrave-Graham, May). Let N be an integer of unknown factorization. Let
p be a divisor of N such that p ≥ Nβ for some constant 0 <β≤ 1. Let f ∈ZN [x] be a monic polynomial
of degree δ. Then there is an efficient algorithm that outputs all integers x such that

f (x) = 0 mod p and |x| ≤ Nβ2/δ.

Here |x| ≤ B indicates that x ∈ {−B , . . . ,−1,0,1, . . . ,B}.

In the statement of the theorem, when we write f ∈ZN [x], we mean that f is a polynomial in an indeter-
minate x with coefficients in ZN . A monic polynomial is one whose leading coefficient is 1.

When N = pq is an RSA modulus (where p and q are random primes of equal bit-length with p > q), the
interesting instantiations of the theorem have either β= 1/2 (i.e., we are looking for solutions modulo a
prime factor of N ) or β= 1 (i.e., we are looking for small solutions modulo N ).

For this problem, let N be an RSA modulus with gcd(φ(N ),3) = 1 and let FRSA(m) := m3 (mod N ) be the
RSA one-way function.

(a) Let n = dlog2 Ne. Show that you can factor an RSA modulus N = pq if you are given:

• the low-order n/3 bits of p,

• the high-order n/3 bits of p, or

• the high-end n/6 bits of p and the low-end n/6 bits of p.

(b) In the dark ages of cryptography, people would encrypt messages directly using FRSA. That is, they
would encrypt an arbitrary bitstring m ∈ {0,1}blog2 Nc/5 by

• setting M ← 2`+m for some integer ` to make N /2 ≤ M < N , and

• computing the ciphertext as c ← FRSA(M).

(Note that the first step corresponds to padding the message M by prepending it with a binary string
“10000 · · ·000.”)

Show that this public-key encryption scheme is very broken. In particular, give an efficient algorithm
that takes as input (N ,c) and outputs m.

(c) To avoid the problem with the padding scheme above, your friend proposes instead encrypting
the short message m ∈ {0,1}blog2 Nc/5 by setting M ← (m‖m‖m‖m‖m) ∈ {0,1}blog2 Nc and outputting
c ← FRSA(M). Show that this “fix” is still broken.

(d) The RSA-FDH signature scheme uses a hash function H : {0,1}∗ →ZN . The signature on a message
m ∈ {0,1}∗ is the value σ← F−1

RSA(H(m)) ∈ ZN . As we discussed in lecture, the signature σ is n =
dlog2 Ne bits long. Show that the signer need only output signatures of 2n/3 bits while still

• retaining exactly the same level of security (i.e., using the same size modulus), and



• having the verifier run in polynomial time.1

Problem 3: On The Importance of Elliptic-Curve Point Validation [10 points]. In this problem, we
will see that all parties in a cryptographic protocol must verify that adversarially chosen points are on
the right curve, and failing to do so may break security. We exemplify this by considering a variant of
elliptic-curve Diffie-Hellman key exchange in which the server uses the same key pair across multiple
sessions. More specifically, let E : y2 = x3 + Ax +B be an elliptic curve over Fp , where q := |E(Fp )| is a
prime number and P ∈ E(Fp ) is a generator. The server holds a fixed secret key α←R Zq and advertises
(e.g., in its TLS certificate) the corresponding fixed public key αP ∈ E(Fp ). A client connects to the server
by choosing β←R Zq , computing V =βP , and sending V to the server. Both sides then compute the shared
secret W =αβP . For simplicity, we assume that the server then sends the message Es(W,“Hello!”) to the
client, where (Es ,Ds) is some symmetric cipher.

(a) Explain how the server can check that the point V it receives from the client is indeed in E(Fp ).

Observe that the elliptic-curve group addition formulae are independent of the parameter B of the curve
equation. In particular, for every curve Ê : y2 = x3 + Ax + B̂ for some B̂ ∈ Fp , applying the formulae for
addition in E(Fp ) to any two points V̂ ,Ŵ ∈ Ê(Fp ) gives the point V̂ �Ŵ ∈ Ê(Fp ).

(b) Suppose there exists a curve Ê : y2 = x3 + Ax + B̂ such that |Ê(Fp )| is divisible by a small prime t
(i.e., t =O(polylog(q))). Show that if the server does not check that V ∈ E(Fp ), a malicious client can
efficiently learn α mod t . You may assume one can efficiently find a point of order t in Ê(Fp ).

(c) Use Part (b) to show how a malicious client can efficiently learn the secret key α, if the server does not
check that V ∈ E (Fp ). You may assume that if B̂ ←R Fp , then |Ê (Fp )| is uniform in

[
p +1−2

p
p, p +1+2

p
p

]
and is efficiently computable. (As in Part (b), you may assume that whenever the order of a curve has
a small prime factor t , one can efficiently find a point of order t on that curve.)

Problem 4: Somewhat-homomorphic encryption from pairings [10 points]. In this problem, you will
construct a “somewhat homomorphic” public-key encryption scheme: it allows computing any number of
additions and a single multiplication. Let G1 be a cyclic group of prime order p and g ∈G1 be a generator
of the group. Consider the following two algorithms:

Gen(g ) → (pk,sk) : Choose random a,b,c ←R Zp such that c 6= ab (mod p). Set ga = g a , gb = g b , and
gc = g c . Output the public key pk= (g , ga , gb , gc ) and the secret key sk= (a,b,c).

Enc(pk= (g , ga , gb , gc ),m) → ct : Given a message m ∈Zp , choose r ←R Zp and output ct= (g m g r
a , g m

b g r
c ).

(a) Give a Dec algorithm that takes a secret key sk and a ciphertext ct = (u, v) and outputs m. Your
algorithm needs to be efficient only if the message m lies in some known small space (say 0 ≤ m < B
as an integer, for some bound B =O(polylog(p))).

(b) Give an algorithm Add(pk,ct,ct′) → ctsum that takes as input two ciphertexts ct and ct′, that are
encryptions of m,m′ ∈Zp respectively, and outputs an encryption of m +m′ mod p.

1We don’t use this optimization in practice since (1) Schnorr signatures are so much shorter and (2) the verification time here is
polynomial, but still much larger than the normal RSA-FDH verification time. Still, it’s a cool trick to know.



Now let G2,GT be two other cyclic groups of order p (i.e., |G1| = |G2| = |GT |), e : G1 ×G2 → GT be a
pairing, and h ∈G2 and e(g ,h) ∈GT be generators of G2 and GT respectively. Furthermore, let (pk′,sk′) ←
Gen(h) be the public and secret keys obtained by running Gen using the group G2. Consider now the
following algorithm:

Mult(ct,ct′) : On input two ciphertexts ct= (u, v) ← Enc(pk,m) and ct′ = (u′, v ′) ← Enc(pk′,m′), output
the tuple (w1, w2, w3, w4) ∈G4

T where

w1 = e(u,u′), w2 = e(u, v ′), w3 = e(v,u′), w4 = e(v, v ′) .

(c) Let α1, . . . ,α4 ∈ Zp such that wi = e(g ,h)αi (i.e., αi is the discrete log of wi in GT ). Show that
m ·m′ mod p can be expressed as a linear function

∑4
i=1 Ciαi , where the coefficients Ci are in-

dependent of m,m′. (You need not give an explicit formula for the coefficients Ci .)

(d) Show how to efficiently recover m ·m′ mod p from w1, . . . , w4 and the two secret keys sk and sk′. As
in Part (a), you can assume that the messages m,m′ lie in some known small space.

(e) Extra credit [3 points]. Show that if the DDH assumption holds in G1 then E = (Gen,Enc,Dec) is a
semantically secure public-key encryption scheme.

Problem 5: Time Spent [3 points for answering]. How long did you spend on this problem set? This is
for calibration purposes, and the response you provide will not affect your score.
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