
CS 355: Topics in Cryptography Spring 2022

Problem Set 3

Due: Friday, 6 May 2022 (submit via Gradescope)

Instructions: You must typeset your solution in LaTeX using the provided template:

https://crypto.stanford.edu/cs355/22sp/homework.tex

Submission Instructions: You must submit your problem set via Gradescope. Please use course code
862WDX to sign up. Note that Gradescope requires that the solution to each problem starts on a new
page.

Bugs: We make mistakes! If it looks like there might be a mistake in the statement of a problem, please ask
a clarifying question on Ed.

Problem 1: Conceptual Questions [10 points]. For each of the following statements, say whether it is
TRUE or FALSE. Write at most one sentence to justify your answer.

(a) Let 〈P,V 〉 be a zero-knowledge interactive protocol for some language. The protocol has perfect
completeness and soundness error 1/3. Which of the following are true:

i A malicious verifier interacting with an honest prover will always accept a true statement.

ii An honest verifier interacting with a malicious prover will “learn nothing” besides the state-
ments validity.

(b) If an interactive proof 〈P,V 〉 for an NP language L is a proof of knowledge with negligible knowledge
error, then 〈P,V 〉 has negligible soundness error (i.e., a malicious prover can convince an honest
verifier of a false statement with at most negligible probability).

(c) Consider a modified version of Schnorr’s signature in which the signing nonce r is computed as
r ← H (m), where H : {0,1}∗ →Zq is a hash function, m is the message to be signed, and q is the order
of the group used for the signature scheme. This deterministic version of Schnorr’s signature scheme
is secure.

(d) Consider a hash function H : X →Y , and the NP-relation Rn for knowledge of n pre-images of H .
Formally, Rn has inputs space Yn , witness space X n , and is defined by {(x ∈X n , y ∈Yn) : H(w1) =
x1 ∧H(w2) = x2 ∧·· ·∧H(wn) = xn}. A SNARG for Rn must have o(n) verification time.

Problem 2: Understanding Interactive Proofs [15 points]. (Problems from “The Foundations of Cryptog-
raphy - Volume 1, Basic Techniques” by Oded Goldreich)

(a) The role of verifier randomness: Let L be a language with an interactive proof system where the verifier
V is deterministic. Show that L ∈NP.

(b) The role of prover randomness: Let L be a language with an interactive proof system. Show that there
exists an interactive proof system for L for which the prover P is deterministic.
[Hint: Use the fact that P is unbounded.]

https://crypto.stanford.edu/cs355/22sp/homework.tex
https://gradescope.com/

(c) The role of errors: Let L be a language with an interactive proof system with perfect soundness, that is
if x ∉ L, the verifier never accepts (not even with negligible probability). Show that L ∈NP.

Problem 3: Sigma Protocol for Circuit Satisfiability [10 points]. Let circuit-SAT be the language of
satisfiable Boolean circuits1 :

circuit-SAT= {
C : {0,1}n → {0,1} | n ∈N, ∃(x1, . . . , xn) ∈ {0,1}n such that C (x1, . . . , xn) = 1

}
.

Let Commit : {0,1}×R→ C be a perfectly-binding and computationally-hiding commitment scheme with
message space {0,1}, randomness space R, and commitment space C. Suppose that there exist Sigma
protocols 〈PXOR,VXOR〉 and 〈PAND,VAND〉 for languages LXOR and LAND, respectively, where:

LXOR =
{

(c1,c2,c3) ∈ C3
∣∣∣∣ ∃(m1,m2,m3) ∈ {0,1}3, (r1,r2,r3) ∈R3 such that

∀i ∈ {1,2,3} ci =Commit(mi ;ri) and m1 ⊕m2 = m3

}
LAND =

{
(c1,c2,c3) ∈ C3

∣∣∣∣ ∃(m1,m2,m3) ∈ {0,1}3, (r1,r2,r3) ∈R3 such that
∀i ∈ {1,2,3} ci =Commit(mi ;ri) and m1 ∧m2 = m3

}
.

Give a Sigma protocol for circuit-SAT. In addition to describing a protocol, you will also need to show
that your protocol satisfies completeness, soundness, and honest-verifier zero-knowledge. [Hint: When
showing that your protocol is honest-verifier zero-knowledge, you may want to use a hybrid argument.
One of your hybrids might rely on the commitment scheme being computationally hiding, and the other
hybrid might rely on the underlying Sigma protocols being honest-verifier zero-knowledge.]

Problem 4: Using Polynomial Commitments [12 pts].

(a) Aggregation One interesting property of the KZG polynomial commitment scheme is that it permits
aggregation: a single proof can establish openings for multiple polynomials. Aggregation for a
polynomial commitment is expressed through two algorithms:

• Open2(pp,c0,c1, f0, f1, x) →π: Creates an opening proof for f0(x) and f1(x) (which have com-
mitments c0 and c1 respectively).

• Check2(pp,c0,c1, y0, y1, x,π) → {0,1}: Checks that π proves y0 = f0(x) and y1 = f1(x).

With aggregation, we need a few extra security properties to capture the fact that legitimate proofs
are always accepted, and illegitimate proofs are almost always rejected.

• (Perfect) Aggregate Correctness: For all d , all polynomials f0 and f1 in the field, of degree at
most d , and all x in the field,

Pr


pp ← Setup(d)
c0 ←Commit(pp, f0)
c1 ←Commit(pp, f1)
π←Open2(pp,c0,c1, f0, f1, x)

:
Check2(pp,c0,c1, f0(x),

f1(x), x,π) = 1

= 1

(where Commit is from the base polynomial commitment scheme).

1You can assume without loss of generality that a Boolean circuit consists of only XOR and AND gates.

• Aggregate Evaluation Binding: For all efficient adversaries A, if we set pp ← Setup(d) and
(x,c0,c1,π,π′, y0, y1, y ′

0, y ′
1) ←A(pp,d), then

Pr

 Check2(pp,c0,c1, y0, y1, x,π) = 1
∧Check2(pp,c0,c1, y ′

0, y ′
1, x,π′) = 1

∧(y0, y1) 6= (y ′
0, y ′

1)

= negl(λ).

For this problem, construct Open2 and Check2 and show that your construction satisfies aggregate
correctness. Then, give an informal argument (2 or 3 sentences) that it satisfies aggregate evaluation
binding (assuming t-SDH is hard) in the random oracle model.

[Extra Credit (2 pts)] Give a formal proof that your scheme is aggregate evaluation binding (assuming
t-SDH is hard) in the random oracle model.

You may use a random oracle over whichever domain you like.

Hint: you may want to revisit aggregation for BLS signatures.

(b) Accumulators Cryptographic accumulators represent a data structure as a small digest in such a
way that operations over the data structure can be verified with access to only the digest. A set
accumulator over universe U comprises five algorithms:

• Create(S ⊂U) → d : Creates a digest representing the set S ⊂U .

• ProveMem(S ⊂U ,d , x ∈ S) →π: Creates a proof that x ∈ S.

• VerifyMem(d , x,π) → {0,1}: Verifies a proof that x ∈ S.

• ProveNonMem(S ⊂U ,d , x ∉ S) → π̄: Creates a proof that x ∉ S.

• VerifyNonMem(d , x, π̄) → {0,1}: Verifies a proof that x ∉ S.

A set accumulator is membership-secure if forging membership proofs for elements not in the set is
hard. Similarly, a set accumulator is non-membership-secure if forging non-membership proofs for
elements in the set is hard.2 That is, if for all efficient adversaries A, the following probabilities are
negligible in λ:

Pr

[
(S, x,π) ←A(U)
d ←Create(S)

:
x ∉ S ∧

VerifyMem(d , x,π) = 1

]
Pr

[
(S, x, π̄) ←A(U)
d ←Create(S)

:
x ∈ S ∧

VerifyNonMem(d , x, π̄) = 1

]

Using an evaluation-binding polynomial commitment scheme (which may, or may not be the KZG
scheme) for polynomials over F, build a set accumulator for U = F. Prove that your accumulator is
membership and non-membership secure, assuming that the underlying polynomial commitment
scheme is binding.

Hint: What set of values is naturally associated with a polynomial?

(c) Extra Credit [2 points]. Now, assume that your accumulator construction is instantiated with the
KZG polynomial commitment scheme.

Show how one can compute the digest d ′ of S ∪ {y} given the digest d for S, and the secret exponent
of the polynomial commitment scheme, α. Your algorithm,

2In the literature, both properties are called “collision resistance”. We avoid that name here to avoid a confusion with hash
functions.

• Update(S,d , y) → d ′: returns a digest d ′ equal to Create(S ∪ {y})

should run in time independent of |S|, and you should show it is correct.

Furthermore, show how one can compute a single update token, u, that allows any membership
proof π for some x which is valid with respect to d to be updated into a new membership proof π′

which is valid with respect to d ′. That is, given two algorithms:

• MakeToken(S,d , y) → u: creates update token u for membership proofs with respect to d

• UpdateProof(d , x,π,u) →π′: creates a new proof π′ which is valid with respect to d ′

and show that these algorithms produce a valid π′.3

Problem 5: Time Spent [3 points for answering]. How long did you spend on this problem set? This is
for calibration purposes, and the response you provide will not affect your score.

Optional Feedback [0 points]. Please answer the following questions to help us design future problem
sets. You do not need to answer these questions, and if you would prefer to answer anonymously, please
use this form. However, we do encourage you to provide us feedback on how to improve the course
experience.

(a) What was your favorite problem on this problem set? Why?

(b) What was your least favorite problem on this problem set? Why?

(c) Do you have any other feedback for this problem set?

(d) Do you have any other feedback on the course so far?

3Note: Some accumulator constructions to not admit the efficient update algorithms you build in this sub-problem. We suspect
yours will, but if you’re worried that your construction for part (b) does not allow for efficient updates, feel free to consult with
the teaching staff.

https://stanforduniversity.qualtrics.com/jfe/form/SV_3DHvozY6gXerpsO

	Problem 1: Conceptual Questions [10 points].
	Problem 2: Understanding Interactive Proofs [15 points].
	Problem 3: Sigma Protocol for Circuit Satisfiability [10 points].
	Problem 4: Using Polynomial Commitments [12 pts].
	Problem 5: Time Spent [3 points for answering].
	Optional Feedback [0 points].

