
CS 355: Topics in Cryptography Spring 2022

Problem Set 4

Due: 5pm Friday, 20 May 2022 (submit via Gradescope)

Instructions: You must typeset your solution in LaTeX using the provided template:

https://crypto.stanford.edu/cs355/22sp/homework.tex

Submission Instructions: You must submit your problem set via Gradescope. Please use course code
862WDX to sign up. Note that Gradescope requires that the solution to each problem starts on a new
page.

Bugs: We make mistakes! If it looks like there might be a mistake in the statement of a problem, please ask
a clarifying question on Ed.

Problem 1: True/False [4 points]. (one sentence explanation)

(a) Securely computing a function f : {0,1}n×{0,1}m → {0,1} using Yao’s protocol (as described in lecture),
requires the two parties to exchange at most O(n +m) bits in the worst case.

(b) You and your friends want to determine which one of you has the lowest salary. You design and
run a protocol, at the end of which all your friends learn that their Big 4 salariesTM are higher than
yours. This blatant invasion of your privacy could have been avoided if you had used a proper
maliciously-secure MPC protocol.

Problem 2: Garbled Circuits are not maliciously secure [7 points]. Suppose that Alice has bit x, Bob
has bit y , and they use Yao’s GC protocol to compute z = AND(x, y).

(a) (True/False, no explanation): If Alice’s bit is 1, and all parties follow the protocol, then afterwards
Alice can tell whether Bob’s bit is 0 or 1.

(b) (True/False, no explanation): If Alice’s bit is 0, and all parties follow the protocol, then afterwards
Alice can tell whether Bob’s bit is 0 or 1.

(c) Suppose that Alice has bit 0 and plays the role of the garbler. Show that by incorrectly garbling the
circuit, and by observing the response of Bob (who is following the protocol), Alice can learn Bob’s bit.
Explicitly describe how Alice’s attack works, and informally explain why Bob cannot detect that Alice
has deviated from the protocol. In your attack, Alice must participate honestly in the OT protocol.

Problem 3: Compiling to R1CS [10 points]. The SNARG discussed in class (“Marlin”) operates on
relations expressed as rank-1 constraint systems (R1CSs). Recall that an R1CS instance comprises a set
of variables, {v1, . . . vn} in a finite field F, and constraints of the form

(
a0 +∑n

i=1 ai vi
)(

b0 +∑n
i=1 bi vi

) =
c0 +∑n

i=1 ci vi where ai ,bi ,ci are constants. Thus, each constraint requires the product of two linear
combinations of variables (and the constant 1) to equal a third linear combination. Three examples with
variables x, y, z: x y = z is a rank-1 constraint that forces z to be the product of x and y ; 0 = z − x − y is a

https://crypto.stanford.edu/cs355/22sp/homework.tex
https://gradescope.com/

rank-1 constraint that forces z to be the sum of x and y ; and xxx = z is not a rank-1 constraint. For this
problem, you may assume that the field has prime order.

To express relations defined in terms of booleans or fixed-width integers (like in C), these objects must
be encoded as field element, and operations over them must be expressed as rank-1 constraints. In this
problem, we’ll consider booleans, encoded as 0 ∈ F (false) or 1 ∈ F (true). For a field element x which is
bit-valued (zero or one), let bool(x) denote the corresponding boolean.

For each sub-problem you’re given some inputs, assumptions that you can make about those inputs,
and desired outputs. You should write the rank-1 constraints necessary to ensure that the outputs have
the desired property. You may introduce auxiliary variables if needed.

Unless otherwise noted, each sub-problem requires only one or two constraints (you may use more if
you wish). The first problem has been completed for you, as an example.

Extra Credit [2pts] Complete parts (a) through (g) in one constraint and parts (h) through (j) in two.

(a) FORCE-BIT: Given x ∈ F, ensure is is bit-valued (there is no ouput).

Solution: The rank-1 constraint is: (1−x)x = 0.

(b) NOT: Given bit-valued x ∈ F, ensure r ∈ F is bit-valued and bool(r) =¬bool(x).

(c) AND: Given bit-valued x, y ∈ F, ensure r ∈ F is bit-valued and bool(r) = bool(x)∧bool(y).

(d) OR: Given bit-valued x, y ∈ F, ensure r ∈ F is bit-valued and bool(r) = bool(x)∨bool(y).

(e) XOR: Given bit-valued x, y ∈ F, ensure r ∈ F is bit-valued and bool(r) = bool(x)⊕bool(y).

(f) BIT-EQUAL: Given bit-valued x, y ∈ F, ensure r ∈ F is bit-valued and bool(r) = bool(x) ⇐⇒ bool(y).

(g) FORCE-NON-ZERO: Given x ∈ F, ensure that is it non-zero (there is no output). Briefly explain why
your constraints provide this guarantee.

Hint: you may want to introduce an auxiliary variable

(h) IS-ZERO: Given x ∈ F ensure r ∈ F is bit-valued and bool(r) is true iff x is zero. Briefly explain why
your constraints provide this guarantee.

(i) EQUAL: Given x, y ∈ F, ensure r ∈ F is bit-valued and bool(r) is true iff x = y . Briefly explain why your
constraints provide this guarantee.

(j) n-ary-AND Given bit-values x1, . . . , xn ∈ F, ensure r ∈ F is bit-valued and bool(r) = bool(x1)∧ ·· ·∧
bool(xn). Briefly explain why your constraints provide this guarantee.

You may assume that n ≪|F|, and you may use only O(1) constraints.

(k) [Extra Credit (1pt)] n-ary-XOR Given bit-values x1, . . . , xn ∈ F, ensure r ∈ F is bit-valued and bool(r) =
bool(x1)⊕·· ·⊕bool(xn). Briefly explain why your constraints provide this guarantee.

You may assume that n ≪|F|, and you may use only O(logn) constraints.

Problem 4: Verifiable Secret Sharing [10 points]. Consider a dealer who wants to share a secret α
between n shareholders using the t-out-of-n Shamir secret-sharing scheme, for some t < n. The share-
holders suspect that the dealer secretly holds a grudge against one of them and has given that person an
invalid share, inconsistent with the rest of the shares. (We say that a set of shares is consistent if there
exists a secret α such that every coalition of at least t shareholders can recover the (same) secret α.) In
this problem, we assume that all shareholders are honest.

(a) Show that if they are willing to reveal all their shares, the shareholders can detect if one of them has
indeed been given an invalid share.

We would like the shareholders to be able to detect an invalid share without having to reconstruct the
secret in the verification process. To do this, consider the following modification to Shamir’s secret-sharing
scheme:

Let G be a cyclic group of prime order q > n, and let g ,h each be a generator of G.

1. The dealer chooses β, a1,b1, . . . , at−1,bt−1 ←R Zq and constructs the polynomials A(x) = α+
a1x +a2x2 +·· ·+at−1x t−1 and B(x) =β+b1x +b2x2 +·· ·+bt−1x t−1 over Zq .

2. The dealer creates t Pedersen commitments c0,c1, . . . ,ct−1 ∈ G where co = Commit(α;β) =
gαhβ and c j = Commit(a j ;b j) = g a j hb j for j ∈ [t −1]. The dealer publicly broadcasts all the
commitments to all the shareholders.

3. The dealer creates n shares {(i , si ,ri)}n
i=1, where si = A(i) and ri = B(i) are computed over Zq .

The dealer privately sends each of the n shareholders her own share.

(b) Describe a verification routine that allows the shareholders to jointly verify that all the shares given
to them are valid without revealing any additional information about the secret.

(c) Prove that the protocol preserves the secrecy of the secret α against any coalition of fewer than t
shareholders. [Hint: Specify the view of any coalition of t −1 shareholders and then prove this view is
distributed independently of the secret α.]

(d) Extra Credit [4 points]. Prove that if a dealer can trick the shareholders into accepting an invalid set
of shares it can solve the disrete log of h with respect to g .

Problem 5: Generating Beaver Multiplication Triples [15 points]. Recall from lecture that Beaver
multiplication triples enables general multiparty computation on secret-shared data. In this problem, we
will explore two methods that can be used to generate Beaver multiplication triples. For simplicity, we
will just consider the two-party setting and we will generate Beaver multiplication triples over the binary
field Z2 (where addition corresponds to xor). To be precise, we first describe an “idealized process” for
generating a single multiplication triple. In this “idealized process”, a trusted party generates the triple
and then distributes the shares of the triple to the two parties Alice and Bob.

1. The trusted party chooses a,b ←R Z2 and computes c = ab ∈Z2.

2. The trusted party distributes a 2-out-of-2 secret sharing of a, b, and c to Alice and Bob. Specifically,
the trusted party samples ra ,rb ,rc ←R Z2 and gives ra ,rb ,rc to Alice. The trusted party then computes
sa = a ⊕ ra , sb = b ⊕ rb , and sc = c ⊕ rc , and gives sa , sb , sc to Bob.

By construction [a] = (ra , sa) is an additive secret-sharing of a, [b] = (rb , sb) is an additive secret-sharing
of b, and [c] = (rc , sc) is an additive secret-sharing of c. Moreover, c = ab, so ([a], [b], [c]) is a valid Beaver
multiplication triple.

We will show how Alice and Bob can generate these Beaver triples without relying on a trusted party.
Throughout this problem, you may assume that Alice and Bob are “honest-but-curious” (namely, they
follow the protocol exactly as described, but may try to infer additional information from the protocol
transcript—this is the model that we considered in lecture).

(a) Show how Alice and Bob can generate a Beaver multiplication triple using Yao’s protocol.1 Your
construction should not make any modifications to the internal details of Yao’s protocol (in fact, any
secure two-party computation protocol can be used here). Then, give an informal argument why
your protocol is correct and secure. [Hint: To apply Yao’s protocol, you will need to come up with a
two-party functionality f that Alice and Bob will jointly compute. Try letting Alice’s inputs to f be
her shares (ra ,rb ,rc), which she samples uniformly at random at the beginning of the protocol.]

(b) Show how Alice and Bob can use a single invocation of an 1-out-of-4 oblivious transfer (OT) protocol
(on 1-bit messages) to generate a Beaver multiplication triple. Give an informal argument why
your protocol is correct and secure. (In a 1-out-of-n OT, the sender has n messages m1, . . . ,mn ,
while the receiver has a single index i ∈ [n]. At the end of the protocol execution, the sender learns
nothing while the receiver learns mi (and nothing else). The formal definitions of sender and receiver
privacy are the analogs of those presented in lecture.) [Hint: Try using OT to directly evaluate the
functionality f you constructed from Part (a).]

(c) Let ℓ ∈N be a constant. Show how to build a 1-out-of-2ℓ OT protocol (on 1-bit messages) using ℓ
invocations of an 1-out-of-2 OT protocol (on λ-bit messages) together with a PRF F : {0,1}λ×{0,1}ℓ→
{0,1}. Here, {0,1}λ is the key-space of the PRF and {0,1}ℓ is the domain of the PRF. Then, give an
informal argument for why your protocol satisfies correctness, sender privacy, and receiver privacy.
[Hint: Start by having the sender sample 2ℓ independent PRF keys. The sender will use these keys to
blind each of its messages m1, . . . ,m2ℓ .]

1You may use the variant of Yao’s protocol where only one party receives output (and the other party learns nothing).

	Problem 1: True/False [4 points].
	Problem 2: Garbled Circuits are not maliciously secure [7 points].
	Problem 3: Compiling to R1CS [10 points].
	Problem 4: Verifiable Secret Sharing [10 points].
	Problem 5: Generating Beaver Multiplication Triples [15 points].

