Probability-Theory Cheat Sheet

Common Notation

- For a finite set $S, x \stackrel{\mathrm{R}}{ }$ S denotes an element chosen uniformly at random from S. (More formally, x is a random variable taking each value $a \in S$ with probability $1 /|S|$.)
- For a positive integer n, the expression $[n]$ denotes the set $\{1,2, \ldots, n\}$.
- When we will want to be explicit about the probability distribution, we will often use either the notation $\mathbb{E}\left[x^{2}: x \mathbb{R}^{\mathbb{R}}\{-1,1\}\right]=1$ or $\mathbb{E}_{x} \mathbb{R}_{\{-1,1\}}\left[x^{2}\right]=1$.
- For a probability event A, the indicator variable I_{A} is a random variable that takes the value 1 when event A occurs, and 0 otherwise.

Linearity of expectation. let X and Y be random variables taking values in \mathbb{R}, and let $a, b \in \mathbb{R}$ be constants. Then

$$
\mathbb{E}[a X+b Y]=a \cdot \mathbb{E}[X]+b \mathbb{E}[Y] .
$$

Union Bound. For events E_{1}, \ldots, E_{n},

$$
\operatorname{Pr}\left[E_{1} \cup \cdots \cup E_{n}\right] \leq \operatorname{Pr}\left[E_{1}\right]+\cdots+\operatorname{Pr}\left[E_{n}\right] .
$$

In many situation, we will be interested in bounding the probability that a random variable deviates from its expectation.

Markov's inequality. Let X be a non-negative random variable and $a>0$ be a constant. Then

$$
\operatorname{Pr}[X \geq a] \leq \frac{\mathbb{E}[X]}{a} .
$$

Chebyshev's inequality. Let X be a random variable and let $\delta>0$ be a constant. Then

$$
\operatorname{Pr}[|X-\mathbb{E}[X]| \geq \delta] \leq \frac{\operatorname{Var}[X]}{\delta^{2}} .
$$

Chernoff Bound. Let X_{1}, \ldots, X_{n} be independent random variables taking values in [0,1], and let $X=$ $\sum_{i \in[n]} X_{i}$. Then

$$
\begin{aligned}
\forall 0<\epsilon \leq 1, & \operatorname{Pr}[X \leq(1-\epsilon) \mathbb{E}[X]] \leq e^{-\frac{\epsilon^{2} \mathbb{E}[X]}{2}} \\
\forall 0<\epsilon, & \operatorname{Pr}[X \geq(1+\epsilon) \mathbb{E}[X]] \leq e^{-\frac{\epsilon^{2} \mathbb{E}}{2+\epsilon}} .
\end{aligned}
$$

Note that the Chernoff bound holds even if the X_{i} take real values in the interval [0,1], rather than just integer values in $\{0,1\}$. Moreover, the X_{i} don't have to be identically distributed, but they crucially need to be mutually independent.

Example. Consider throwing n balls independently and uniformly into n bins.

- What is the expected number of empty bins?

For $i \in[n]$, let Z_{i} be and indicator variable of the event that bin i is empty. It holds

$$
\operatorname{Pr}\left[Z_{i}=1\right]=\left(1-\frac{1}{n}\right)^{n} \approx \frac{1}{e} .
$$

(More formally, we can use that for $n>1,|x| \leq n$, it holds that $e^{x} \leq\left(1+\frac{x}{n}\right)^{n} \leq e^{x}\left(1-\frac{x^{2}}{n}\right)$). We can express the number of empty bins Z as

$$
Z=\sum_{i \in[n]} Z_{i}
$$

and, by linearity of expectation, the expected number of empty bins is:

$$
\mathbb{E}[Z]=\mathbb{E}\left[\sum_{i \in[n]} Z_{i}\right] \approx \frac{n}{e}
$$

- How concentrated is the number of empty bins Z ?

Ideally, we would want to show that Z is tightly concentrated around its expectation n / e.
The first attempt could be to use Markov's inequality. However, this only gives us a very weak bound, for example:

$$
\operatorname{Pr}[Z \geq 0.75 n] \leq \operatorname{Pr}\left[Z \geq \frac{2 n}{e}\right] \leq \frac{\mathbb{E}[Z]}{2 n / e} \approx 1 / 2
$$

Next, we will use Chebyshev's inequality to get a better bound. To this end, let's compute the variance of Z :

$$
\operatorname{Var}[Z]=\mathbb{E}\left[Z^{2}\right]-(\mathbb{E}[Z])^{2}
$$

To compute the first term,

$$
\mathbb{E}\left[Z^{2}\right]=\mathbb{E}\left[\sum_{i, j \in[n]} Z_{i} \cdot Z_{j}\right]=\sum_{i \neq j} E\left[Z_{i} Z_{j}\right]+\sum_{i \in[n]} E\left[Z_{i}^{2}\right] .
$$

Now note that $Z_{i} Z_{j}=1$ when all n balls miss both bin i and j, which happens with probability $(1-2 / n)^{n}$. Since $Z_{i} \in\{0,1\}$, it also holds that $E\left[Z_{i}^{2}\right]=E\left[Z_{i}\right]=(1-1 / n)^{n}$. Therefore

$$
\mathbb{E}\left[Z^{2}\right]=n(n-1)\left(1-\frac{2}{n}\right)^{n}+n\left(1-\frac{1}{n}\right)^{n}, \quad \text { and } \quad \mathbb{E}[Z]^{2}=n^{2}\left(1-\frac{1}{n}\right)^{2 n}
$$

With a little bit of work, one can then show that $\operatorname{Var}[Z]=O(n)$. Therefore, by Chebyshev's inequality,

$$
\operatorname{Pr}\left[\left|Z-\frac{n}{e}\right| \geq \epsilon n\right] \leq \frac{\operatorname{Var}[Z]}{\epsilon^{2} n^{2}}=O(1 / n),
$$

which is a much tighter bound that we have obtained before from Markov's inequality.

- What it the maximum load amongst all bins?

We will show that with high probability, no bin has load higher than $O(\ln n)$ (in fact, one can show a tighter bound of $O(\ln n / \ln \ln n))$.
For $i, j \in[n]$ let $X_{i j}$ be an indicator variable of ball i landing in bin j. Then, we can write the load of bin j as

$$
L_{j}=\sum_{i \in[n]} X_{i j},
$$

and it holds

$$
\mathbb{E}\left[L_{j}\right]=\sum_{i \in[n]} \mathbb{E}\left[X_{i j}\right]=n \cdot \operatorname{Pr}\left[X_{i j}=1\right]=n \cdot \frac{1}{n}=1 .
$$

Now note that, for every j and every $i \neq i^{\prime}$, the random variables $X_{i j}$ and $X_{i^{\prime} j}$ are independent random variables taking values in $\{0,1\}$. Therefore, we can use the Chernoff bound, with $\mathbb{E}\left[L_{j}\right]=1$ and $\epsilon=2 \ln n+2$, to claim that

$$
\begin{aligned}
\operatorname{Pr}\left[L_{j} \geq(2 \ln n+3)\right] & =\operatorname{Pr}\left[L_{j} \geq(1+(2 \ln n+2)) \mathbb{E}\left[L_{j}\right]\right] \leq \exp \left(-\frac{(2 \ln n+2)^{2}}{2+2 \ln n+2}\right) \\
& \leq \exp \left(-\frac{4 \ln ^{2} n+8 \ln n}{2 \ln n+4}\right) \leq \exp (-2 \ln n)=\frac{1}{n^{2}} .
\end{aligned}
$$

Therefore, by the union bound, it holds that

$$
\operatorname{Pr}\left[\max _{j \in[n]} L_{j} \geq(2 \ln n+3)\right] \leq \sum_{j \in[n]} \operatorname{Pr}\left[L_{j} \geq(2 \ln n+3)\right] \leq n \cdot \frac{1}{n^{2}}=\frac{1}{n} .
$$

