
Stanford University

Topics in Cryptography (CS 355) Lecture #11

Instructor: Lior Rotem May 9, 2023

Disclaimer These lecture notes are aimed to serve as a supplementary resource, and are not
written as a replacement for attending the in-person lecture. Some material might appear here in
a more sketched form than in the lecture, and vice versa. These notes probably contain typos and
might even contain errors. If you find any, please let me know.

Outline In the last couple of lectures we covered interactive and non-interactive proof systems.
We introduced zero-knowledge as a desirable property that makes such protocols non-trivial to con-
struct. In this lecute, we introduce yet another desirable property that is highly non-trivial to obtain:
succinctness. We define what it means for an argument system to be succinct, and present a con-
struction based on PCPs. Then, to set up the group for the next lecture, in which we will see a
more efficient construction, we define and construct polynomial commitment schemes.

1 Succinct Arguments

In the last few lectures, we encountered the magical notion of zero-knowledge (ZK) proofs and
arguments, and saw that any NP language has a ZK proof. We also saw how to make public-coin
proofs non-interactive using the Fiat-Shamir transform. Today, we will take the magic one step
further and consider succinct non-interactive arguments (SNARGs) for NP. Before we define what
we mean by succinct, let us consider an example.

Say that we want to outsource some heavy computation to a cloud service provider. We send the
input x to the server, which responds with the output y. But can we really trust this output? The
server provider is incentivized to minimize the computational work of its machines. What we can
do, is ask that the server appends a non-interactive proof π that the computation was performed
correctly. The computation is actually polynomial time, so a proof exists. But what have we gained
here? Since the computation is polynomial-time, the server can just send an empty proof, and to
verify, we can redo the computation. But this defeats the purpose of outsourcing it in the first
place! Alternatively, the server can send the trace of the computation, but this runs into similar
problems. What we want, is a proof π which is much shorter than the trace of the computation,
and the verifier’s work is greatly diminished relative to performing the entire computation.

More formally, let R be an NP relation, and let T denote the runtime of the associated NP verifier.1

Let (P, V) be an interactive protocol for R. In this lecture we say that (P, V) is succinct if when
the protocol is executed on input (x,w) ∈ R:

1. The total communication is O(|x|) + o(|w|+ T).

2. V ’s runtime is O(|x|) + o(|w|+ T).

1For concreteness, we focus on uniform algorithms. The definition readily extends to cover other models of
computation as well.

1

2 Succinct Non-interactive Arguments (SNARGs) from PCPs

The construction of SNARGs for NP that we will see today relies on the PCP theorem, one of the
highest-regarded accomplishments in computational complexity of the past few decades. Roughly,
the PCP theorem states that any NP language L has a probabilistically checkable proof (PCP). This
means that if x ∈ L, then the prover can compute a long proof π ∈ {0, 1}∗ asserting that this is
indeed the case. The magic is in how the proof is verified. The verifier does not have to read the
entire proof π, it just has to read a few of the bits of π! “Few” can be as little as 3!

Completeness of a PCP says that if x ∈ L then the verifier accepts with probability 1. Soundness
guarantees that even a malicious prover cannot convince a verifier to accept with a probability
greater than 1/2. What do we mean by that? We consider an ideal world, in which the prover first
decides on π. Then, the verifier chooses three locations i1, i2, i3 ∈ {1, . . . , |π|}. The prover then
must respond with π[i1], π[i2], π[i3] and is not allowed to change π after seeing i1, i2, i3. Then, if
x ̸∈ L, with probability at least 1/2 over the choice of i1, i2, i3, the verifier will reject. Soundness
can be amplified using parallel repetition.

We will not see how to construct PCPs in this course, but we will now see how to use them to
construct a SNARG, following ideas by Kilian (1992) and Micali (1994).

From PCPs to SNARGs. The basic idea is to have the prover P compute a PCP proof π and
use a Merkle Tree to commit to π. Then, P can can open π[i1], π[i2], π[i3]. On joint input x, the
protocol (P, V) is proceeds as follows:

1. P computes a PCP proof π for proving x ∈ L. It then computes c← MerkleCommit(π) and
sends c to V .2

2. V chooses three indices i1, i2, i3 to query according to the PCP theorem. V sends i1, i2, i3 to
P .

3. P responds with π[i1], π[i2], π[i3] together with local openings of c with respect to these
locations.

4. V accepts iff all of the local openings are valid with respect to c, and the PCP verifier accepts
(π[i1], π[i2], π[i3]).

Correctness follows from the correctness of the Merkle Tree commitment scheme and the PCP
theorem.

We will not prove soundness, but the intuition is the following. If the Merkle Tree is built using
a collision-resistant hash function, then once c is fixed, P can only open the indices i1, i2, i3 to a
single value each (we stress again that this is just intuition, not a proof!). So we can rely on the
soundness of the PCP protocol.

Making the argument non-interactive and knowledge sound. After parallel repetition,
the argument has negligible soundness error, so we can rely on the Fiat-Shamir transform to make

2If one uses a keyed hash function to compute the Merkle Tree, then an additional round of communication is
needed, in which V samples the hash function and sends it to P . Alternatively, one can assume a keyless hash
function modeled as a random oracle.

2

the protocol non-interactive, resulting in a SNARG. The SNARG could be made into a SNARK
(i.e., an argument of knowledge), but we will not be concerened with knowledge soundness today.

Concrete efficiency. The SNARG that we just saw works in theory, but it is not a realistic
approach towards implementing SNARGs in practice. The problem is that the PCP theorem gives
us a proof that is asymptotically reasonable, but requires too many computational resources to
actually construct in practice.

A broader perspective. The above succinct argument can be seen in more generic terms as
being constructed in two steps. The first step is to construct a succinct interactive proof system
for NP in an idealized world. This part is information-theoretic and requires no cryptography. In
our case, this first step was a proof in the PCP model. The second step is to compile this proof
system into a succinct argument in the standard model using cryptographic tools. In the example
that we saw, this compilation is done using vector commitments (recall HW1). We used Merkle
Trees as a specific instantiation of vector commitments, but other options also work.

Better efficiency via Poly-IOPs. This two-step view suggests a path towards improving the
efficiency of SNARGs: perhaps we can assume a “more idealized” world, in which the verifier has
more power. This can lead to more efficient proofs in this world. We will see a specific example of
such an approach: instead of constructing a PCP, we will use an idealized object called Polynomial
Interactive Oracle Proofs (Poly-IOPs). This generalizes PCPs in two respects. First, we allow
for added interaction. The proof proceeds in rounds, where in each round, the prover fixes some
string that the verifier can then “locally” query. The second generalization is that the verifier is
not restricted to querying local bits of the proof strings. Instead, we interpret the proof strings as
polynomials, and the verifier can query for evaluations of these polynomials at random points. We
will see this model in more detail in the next lecture.

Compiling a Poly-IOP to a SNARG in the standard model requires heavier cryptographic machinery
than just vector commitments. The added interaction does not pose a major problem, and we can
still apply the Fiat-Shamir transform. But now we need a commitment scheme that allows the
verifier to query for evaluation of committed polynomials, and not just individual entries of a
committed string.

3 Polynomial Commitments

A polynomial commitment scheme is a generalization of vector commitment schemes. Informally,
it allows the committer to commit to some polynomial f over a finite field F. We will be interested
in the case where F = Fp for some prime p. More formally, a polynomial commitment scheme is a
tuple of 4 algorithms:

• Setup(d)→ pp. // d is a bound on the degree of f3

• Commit(pp, f)→ c.

3Formally, the Setup algorithm should take in the security parameter. Looking ahead, we will fix a cryptographic
group over which the final scheme will be defined, and assume that this group encodes the security parameter. Setup
will take the description of the group as input, even if we do not explicitly note that fact.

3

• Open(pp, f, x)→ π.

• Verify(pp, c, x, y, π)→ 0/1.

Correcntess essentially requires an honestly-generated commitment and opening to pass verifica-
tion. That is, for every λ ∈ N, every polynomial f ∈ F[X], and every x ∈ F, it holds that

Pr

Verify(pp, c, x, y, π) = 1 :
pp

$← Setup(1λ)

c
$← Commit(pp, f)

π ← Open(pp, f, x)

 = 1.

The biding property for polynomial commitments is called evaluation binding. Informally, it
requires that no PPT adversary can produce a commitment c and open it at a point x ∈ F to two
distinct values y and y′. More formally, for any PPT adversary A there exists a negligible function
negl such that:

Pr

 Verify(pp, c, x, y, π) = 1
∧Verify(pp, c, x, y′, π′) = 1

∧y ̸= y′
:

pp
$← Setup(1λ)

(c, x, y, π, y′, π′)
$← A(pp)

 ≤ negl(λ).

One can also define extractability, which informally means that π is an argument of knowledge
for the underlying polynomial f . This is necessary if we want to prove that the resulting SNARG
is actually a SNARK (a succinct non-interactive argument of knowledge). However, it is trickier to
define and to prove, and we will not consider this property today.

An inefficient construction from vector commitments. A vector commitment scheme triv-
ially yields the following polynomial commitment scheme: To commit to a polynomial f , just
commit to the vector v = (f(0), f(1), . . . , f(p− 1)). An opening at point x ∈ Fp is then just an
opening of the (x− 1)th location of the vector v. This works, but the scheme is inefficient if the p
is large. The power of Poly-IOPs over PCPs will come from working over a large field (and hence,
evaluating a polynomial at a certain point might encode more information than querying a bit in
a PCP string). Hence, the above suggested polynomial commitment scheme will be too inefficient
for us.

A first idea: Commit to coefficients. The first idea is to use Pedersen Commitments to
commit to the coefficients of f . It is parameterized by a group G or order p generated by g and is
defined as follows:

• Setup(d)→ pp = (g, h) where h
$← G.

• Commit((g, h), f) → (c = (ci)i, st = (ri)i), where ri
$← Zp and ci ← gri · hfi for every

i ∈ {0, . . . , d}.4

• Open(pp, f, x, st)→ π, where π ←
∑d

i=0 rix
i.

4Note that the Commit algorithm also outputs a secret state st that will be used by the Open algorithm. This
generalizes the definition for polynomial commitments that we saw before, and will not be needed by the more efficient
scheme we will shortly.

4

• Verify(pp, c, x, y, π) outputs 1 iff gπ · hy =
∏

i c
xi

i .

Observe that the scheme is correct since for y = f(x) it holds that∏
i

cx
i

i =
∏
i

grix
i · hfixi

= gπ · hy.

Evaluation binding can be shown based on the discrete log assumption, similarly to the binding
property of standard Pedersen Commitments. We will not see this here.

The problem with this approach is efficiency. The size of the commitment and the verification time
both grow linearly with the degree of f . This is not enough to construct a SNARG from Poly-IOPs,
and we can do better, as we will now see.

KZG commitments (or: pairings to the rescue, again). We consider an asymmetric bilinear
group (G1,G2,GT , p, g1, g2, e). Denote gT = e(g1, g2). The scheme is defined as follows:

• Setup(d): Sample α
$← Zp, and set v ← gα2 and ui ← gα

i

1 for every i ∈ {0, . . . , d}. Output
pp = ((ui)i, v).

• Commit(((ui)i, v), f): Output c← g
f(α)
1 =

∏
i u

fi
i .

• Open(pp, f, x): Let h(X) = f(X)−f(x)
X−x . Output π ← g

h(α)
1 (computed as above).

• Verify(pp, c, x, y, π) Output 1 iff e(π, v/gx2) = e(c/gy1 , g2).

Correctness holds since

e(π, v/gx2) = e(g
h(α)
1 , gα−x

2) = e

(
g

f(α)−f(x)
α−x

1 , gα−x
2

)
= g

f(α)−y
T = e(g

f(α)−y
1 , g2) = e(c/gy1 , g2)

Evaluation binding is proven via a reduction from the t-Bilinear Strong Diffie-Hellman (t-BSDH)
assumption. The assumption states that given (g1, g

α
1 , . . . , g

αt

1 , gα2) it is hard to come up with a

constant γ ̸= α and g
1

α+γ

T .

Consider an adversaryA that breaks evaluation binding. This means that it outputs (c, x, y, π, y′, π′)
such that Verify(pp, c, x, y, π) = 1, Verify(pp, c, x, y′, π′) = 1 and y ̸= y′. From the validity of the
first verification, we obtain that

e(π, v/gx2) = e(c/gy1 , g2) =⇒ πα−x · gy1 = c.

Similarly, from the second verification, we get that(
π′)α−x · gy

′

1 = c.

This implies that (
π/π′) 1

y′−y = g
1

α−x

1

and so the reduction can just output γ = −x and the group element e((π/π′)
1

y′−y , g2).

5

	Succinct Arguments
	Succinct Non-interactive Arguments (SNARGs) from PCPs
	Polynomial Commitments

