
Stanford University

Topics in Cryptography (CS 355) Lecture #16

Instructor: Lior Rotem May 25, 2023

Disclaimer These lecture notes are aimed to serve as a supplementary resource, and are not
written as a replacement for attending the in-person lecture. Some material might appear here in
a more sketched form than in the lecture, and vice versa. These notes probably contain typos and
might even contain errors. If you find any, please let me know.

Outline In this lecture, we talk about private information retrieval (PIR) schemes. We define
what they are and focus on two settings: the two-server information-theoretic setting and the single-
server computational setting. In both settings, we define a notion of security and see a construction
satisfying it.

1 General Purpose MPC and its Limitations

In the last few lectures, we saw how to compute general functions “securely”; namely, secure
multiparty computation (MPC) and differential privacy (DP). In MPC, parties learn nothing but
the output of the computed function. This is a very strong notion that allows to a lot. In particular,
many cryptographic tasks can be rendered as an MPC task, and are thus solvable by general-purpose
MPC protocols.

This is not without cost. One of the prices we pay for solving tasks with the big hammer of general
purpose MPC is high communication complexity. The protocols that we saw require communication
complexity that is at least proportional to the size of the ciruict computing the function. This can
be prohibitive, as we will see in a minute. In the remainder of the course, we will see what can be
done about that. Today we will focus on Private Information Retrieval (PIR).

Example: Private browsing. Consider the task of retrieving a webpage from a server. Ab-
stractly, we can think of this process as the following simplified scenario: Our browser issues an
index query to a server with access to the entire internet represented in some database form. The
server then replies with the relevant information. But the query itself can reveal sensitive informa-
tion (e.g., personal, medical, etc.). One solution is to use MPC. If we denote the database by DB
and the query by i, then the client and the server can just run an MPC protocol for the function
f(DB, i) = (DB[i],⊥), where the first output is the client’s and the second output is the server’s.
But the circuit computing this function is of size at least DB, which is massive! What can we do?

2 Private Information Retrieval

A private information retrieval (PIR) allows us to do exactly what is described above: A client
holding some index i can learn the i-th entry of a server-stored database DB, without leaking
anything about the index i to the server. But wait, Isn’t that the definition of OT (oblivious
transfer) we saw a couple of lectures ago? The answer is no. OT is a stronger primitive, that

1

also requires that the client learns nothing about DB other than DB[i]. In PIR, we have no such
requirements, which may lead to more efficient constructions.

A trivial solution and inherent limitations. Since there is no notion of “sender privacy” in
PIR, a trivial solution is just to have the server send the entire database DB to the client. This is
perfectly secure since the server obviously learns nothing about i. But this is also utterly inefficient.
If DB is large (as in the private browsing example), this solution quickly becomes infeasible. So
we are interested in a solution in which the total communication between the server and the client
is sublinear in the size of DB. It is not hard to see that this is impossible to obtain if we do not
put any computational restrictions on the server. Intuitively, if the communication is less than
|DB|, then it must “lose information” on at least one entry j of DB. Since the communication must
encode DB[i], an unbounded server can compute j and deduce that i ̸= j.

There are two ways to circumvent this inherent impossibility:

1. Replacing the server with two or more non-colluding servers. This is the original approach
taken by Chor, Goldreich, Kushilevitz, and Sudan [CGKS95].

2. Assuming that the server is computationally bounded. This was initiated by Kushilevitz and
Ostrovsky in [KO97].

We will see both approaches in this lecture. We will focus on the basic solutions proposed in the
1990s, but improvements are known, and we will briefly review the state of the art.

3 Two-Server PIR

In a two-server PIR scheme, we assume that there are two non-colluding servers S0 and S1, each of
which holds a copy of the same DB. On input index i, the client interacts with each of the servers,
and at the end of the interaction, the client should learn DB[i]. However, none of the servers should
learn anything about i. We will focus here on the case where each entry of the database is a bit,
but this can be generalized.

Formally, a two-server PIR scheme is a triple of algorithms:

• Query(N, i)→ (q0, q1). Here, N is the size of DB, i is the index that the client wants to learn,
and qb is the query to server b.

• Answer(DB, q) → a. As before, DB is the database. q is a query received from the client,
and a is the server’s response. Note that there is no difference here between the response
generation of S0 and that of S1. This will be the case in the scheme that we will see, and is
often the case, but one can also think of schemes in which both servers operate differently.

• Reconstruct(a0, a1)→ b. Here a0, a1 are the responses of the servers, and b is the reconstructed
entry.

Correctness requires that the reconstructed bit should match the desired entry of the table. More

2

formally, for any N ∈ N, any i ∈ [N], and any DB ∈ {0, 1}N , it holds that

Pr

b = DB[i] :
(q0, q1)

$← Query(N, i)
a0 ← Answer(DB, q0), a1 ← Answer(DB, q1)

b← Reconstruct(a0, a1)

 = 1.

As for security, we ask that no server, working alone, can deduce anything about i. This is formalized
as follows: For any DB and i ∈ [|DB|], let Q0(DB, i) denote the random variable corresponding to
q0 on client input i and server input DB. Define Q1(DB, i) analogously. Then, we require that for
any DB ∈ {0, 1}∗ and for every pair (i, i′), it holds that

Q0(DB, i) ≡ Q0(DB, i
′)

and
Q1(DB, i) ≡ Q1(DB, i

′).

In words, this means that the distribution of the query to S0 is the same for every possible client
query, and the same holds for S1.

Note that the definition assumes that the servers do not collude since it looks at Q0(DB, i) and
Q1(DB, i) separately. If we look at the joint distribution (Q0(DB, i), Q1(DB, i)), it can leak a lot of
information about i; in fact, it must, if we want to get sublinear communication.

An inefficient warm-up. As a warm-up, consider the following construction:

• Query(N, i): Sample a random q0
$← {0, 1}N and set q1 ← q0 ⊕ ei.

• Answer(DB, q): Output the inner product a← ⟨DB, q⟩.

• Reconstruct(a0, a1): Output b← a0 ⊕ a1.

Correctness follows since

a0 ⊕ a1 = ⟨DB, q0⟩ ⊕ ⟨DB, q0 ⊕ ei⟩ = ⟨DB, q0 ⊕ q0 ⊕ DB[i]⟩ = ⟨DB, ei⟩ = DB[i].

Security follows from the fact that for any i ∈ [N], both q0 and q1 are uniformly random N -bit
strings.

The problem with this construction is that the communication is still linear in N . We just switched
the direction in which the majority of the communication flows: from the client to the server instead
of from the server to the client. Still, we have two extremes. Perhaps we can interpolate between
them?

The CGKS construction. The CGKS construction relies on the idea above, but balances be-
tween the length of the queries and the answers. Assume for simplicity that N is a perfect square
and let n =

√
N (otherwise, we can pad DB to the closest perfect square). The idea is to view DB

as an n× n matrix A. Then, q0, q1 can be of length n instead of N , and the response is of length
n as well. In more detail, we now view the client’s input as a pair of indices (i, j) ∈ [n]× [n]. The
scheme is then defined by:

3

• Query(N, (i, j)): Sample a random q0
$← {0, 1}n and set q1 ← q0 ⊕ ej .

• Answer(DB, q): Parse DB as an n× n matrix A, and output the product a← A · q.

• Reconstruct(a0, a1): Compute u← a0 ⊕ a1 and output u[i].

Correctness follows from the fact that

u = a0 ⊕ a1 = A · q0 ⊕A · q1 = A · (q0 ⊕ q1) = A · ej = aj ,

where aj is the jth column of A. Hence aj [i] = Ai,j = DB[i, j].

Security follows as before: both q0 and q1 are uniformly random vectors for every choice of (i, j).
As for communication complexity: Both the queries and the answers are in {0, 1}n, and so the total
communication is O(n) = O(

√
N) which is indeed sublinear.

PIR and locally-decodable codes. The problem of multi-server information-theoretically se-
cure PIR is very closely related to the problem of designing locally-decodable codes (LDCs). These
are a special type of error-correcting codes. To decode 1 bit of the original message, one does
not have to read the entire codeword. Say that we an LDC that maps messages of length N to
codewords of length L over some alphabet [C], and to decode a single bit from the message, it is
sufficient to read k symbols from the codeword. If the marginal distribution over the location of
each symbol does not depend on the index of the bit to be decoded, then this immediately gives
us a k-server PIR scheme. The communication complexity per server is logL + C. The above
schemes can be seen as obtained from the Hadamard code. A more efficient 2-server scheme can
be obtained by relying on more advanced codes. The best known 2-server scheme is due to Dvir

and Gopi (2015), and achieves communication complexity of O(N
√

log logN/ logN) (sublinear in N).

4 Computational Single-Server PIR

The above scheme can be seen as using “linearly homomorphic” secret sharing: The queries are
additive secret shares q0, q1 of ej . Each server applies a linear function A to the share q it receives,
and then summing the responses a0⊕ a1 gives A · (q0⊕ q1) by the linearly homomorphic properties
of the secret sharing scheme used.

The idea of [KO97] is to “compile” this into a single-server scheme by using linearly homomorphic
encryption. Say that we have a symmetric encryption scheme for which there is an operation +
such that Enc(k,m0) + Enc(k,m1) = Enc(k,m0 ⊕m1). For example, this can be achieved using
ElGamal encryption if the number of additions in not too large.

A first construction. Using an encryption scheme as above, one can easily compiler the CGKS
scheme into a computational single server scheme.

• Query(N, (i, j)): Sample a key k for the above encryption scheme and let q be the vector of

encryptions of ej ’s coordinates. That is, q
$← (Enc(k, 0), . . . ,Enc(k, 1), . . . ,Enc(k, 0)). Record

k for reconstruction.

• Answer(DB, q): Parse DB as an n× n matrix A, and output the product a← A · q.

4

• Reconstruct(k, a): Compute u as the vector of decryptions of the entries of a:
u← (Dec(k, a1), . . . ,Dec(k, an)). Output u[i].

Correctness follows from the linear homomorphic property of the encryption scheme. Namely,

a = A · q = (
∑
t

A1,t · qt, . . . ,
∑
t

An,t · qt) = (Enc(k,A1,j), . . . ,Enc(k,An,j)).

Security follows from the semantic security of the encryption scheme. Namely, an encryption of ej
(by encrypting each entry separately) is computationally indistinguishable from an encryption of
ej′ for every j, j′ ∈ [n].

If the ciphertext size of the encryption scheme is O(λ), then the overall communication is O(λn) =
O(λ
√
N).

Improving the communication complexity. The above protocol allows the client to learn the
entire jth column of the database. But the client is only interested in DB[i, j]. For correctness,
the server only needs to send to ith ciphertext in a to the client, but we cannot to that because it
would break security. The rough idea is thus to treat the server’s response a as a new, smaller,
database DB′, and apply PIR again, so that the client only learns ai, whose decryption is DB[i, j].
In more detail, assume N = n3. We now view DB as an n × n2 matrix A. Assume for simplicity
that ciphertexts are 1-bit long (this cannot be the case, but we will revisit this assumption later).

The scheme is obtained by computing two queries q0 and q1. q0 is an encryption of ej0 as before,
where j0 is the column of A on which the desired bit lies. The server can compute A · q0 to get
an encryption of the j0th column of A. But now, this is a vector of length n2. So we can view it
as an n × n matrix B. Let j1 be the column of B on which the desired bit lies. So in addition to
q0, the client also computes q1 as an encryption of ej1 and sends it to the server, who replies with
a1 ← B · q1. Overall, the query is composed of q0 and q1 and the response is a1. These are all
vectors of length n = N1/3.

Sticking with the recursion. The above scheme lets the client learn n = N1/3 entries of the
database. This is still more than what we set out to do. We can continue with the recursion further;
for a parameter ℓ, we can actually get a scheme with communication complexity Õ(ℓ ·N1/ℓ).

However, using a deeper recursion, a technical subtlety arises. We (falsely) assumed that a ci-
phertext is 1 bit long. This is not the case. To see why this is a problem, consider the O(N1/3)-
communication PIR scheme above. a0 is a vector of n2 bit-encryptions. If each encryption is λ bits
long, a0 is of length λ2n2. This means that q1 needs to be of length λn. If we again encrypt bit by
bit, we need to encrypt λn bits, which means that a1 will be of length λ2n. So the communication
complexity explodes very quickly. To handle this, we need an encryption scheme that: (1) is lin-
early holomorphic; (2) supports a larger message space; and (3) has a good rate, in the sense that
an encryption of a message m is only very slightly longer than m. One such encryption scheme is
Damg̊ard–Jurik scheme.

State of the art. By now, we know how to achieve single-server computationally-private PIR
schemes with communication which is polylogarithmic in |DB|. A link to a survey on PIR schemes
can be found on the course’s website.

5

	General Purpose MPC and its Limitations
	Private Information Retrieval
	Two-Server PIR
	Computational Single-Server PIR

