
Stanford University

Topics in Cryptography (CS 355) Lecture #5

Instructor: Lior Rotem April 18, 2023

Disclaimer These lecture notes are aimed to serve as a supplementary resource, and are not
written as a replacement for attending the in-person lecture. Some material might appear here in
a more sketched form than in the lecture, and vice versa. These notes probably contain typos and
might even contain errors. If you find any, please let me know.

Outline In this lecture, we ask exactly how hard the discrete log problem is. We present a trivial
algorithm and then show that there are better-than-trivial “generic” algorithms that solve the discrete
log problem in any group. We then present the index-calculus algorithm for computing discrete log
in integer groups.

1 How hard is discrete log?

On the importance of concrete security. Recall the discrete log problem: Given a cyclic
group G of order p generated by g, and a uniformly-random group element h ∈ G, the problem
is to find an element x ∈ Zp such that h = gx. In previous lectures, we saw a very fundamental
assumption in cryptography: that there exist groups in the discrete log problem is hard. We thought
of the term “hard” in its asymptotic meaning; that is, the success probability of any PPT algorithm
is negligible (in the security parameter, which is roughly log |G|). But asymptotic guarantees do
not tell the whole picture. In practice, we might be tied to groups of concrete sizes due to various
reasons (efficiency, legacy implementations, and more). If we are restricted to working in a 256-
bit group, then it just might be that the asymptotic do not “kick in” yet for groups of this size.
For example, suppose that we have a PPT algorithm that solves the discrete log problem with
probability 1 for groups of size ≤ 21024 and with probability 0 for groups of size > 21024. Such an
algorithm does not contradict that asymptotic discrete log assumption, but it tells us that discrete
log is easy in 256-bit groups!

So what we want are concrete security bounds for the hardness of discrete log. Given a group G of
order p, and an algorithm A that runs in time t, what is the probability that A solves the discrete
log problem in G? In this lecture, we will primarily be interested in upper bounds: That is, we will
see algorithms that solve the discrete log problem and analyze their runtime vs. success probability
tradeoffs.

The cost model. Throughout the lecture, we will fix G, p and g. For simplicity of presenta-
tion, we will count all operations in G and in Zp as unit-cost. This includes group operations,
exponentiations in the group, and arithmetic operations. In groups of interest, all of these can be
implemented using poly(log |G|) basic operations. Hence, the bounds that we will derive will be
accurate up to a multiplicative poly(log |G|) term, which will be of lower order.

1



A trivial solution. As a warm-up, consider a brute force algorithm A, whose running time is
t ≤ p. Given as input a group element h, A iterates over i = 0, . . . , t− 1 and checks if gi = h. If it
finds such an i, it outputs it and terminates. If no such i is found, A outputs ⊥ (implying failure)
and terminates. Observe that A indeed runs in time t.

What is the success probability of A? Let h = gx. Then A succeeds if x ∈ {0, . . . , t − 1}. Since x
is chosen at random from Zp, this happens with probability t/p.

2 A Random Collision-Based Algorithm

Recall Pedersen Commitments we saw in lecture #3. These commitments were parameterized by
g and an additional random group element h and were defined by c = gr · hm for a message m and
randomness r in Zp. We proved that an adversary that breaks binding – that is, finds m0 ̸= m1

and r0, r1 such that gr0 ·hm0 = gr1 ·hm1 – immediately implies an algorithm that finds the discrete
log of h with respect to g by outputting (r1 − r0) · (m0 −m1)

−1. We will see three algorithms that
use this fact.

The first algorithm simply finds a random collision. Consider the following algorithm A that gets
a discrete log challenge h and proceeds as follows:

1. For i = 1, . . . , t:

(a) Sample mi, ri
$← Zp.

(b) If gri · hmi = grj · hmj and mi ̸= mj for some j < i, output (ri − rj) · (mj −mi)
−1 and

terminate.

2. Output ⊥ and terminate.

The running time of A is O(t) since it makes t iterations, in each of which it makes a constant
number of operations. By the birthday bound, the probability that A finds a collision in Step 1b
is ≈ t2/p. This means that the success probability of A is ≈ t2/p, which is better than the trivial
algorithm that we saw before.

Observe that the random collision algorithm has two main drawbacks:

1. Probabilistic success: The algorithm succeeds with probability ≈ t2/p. We can ensure that
it succeeds with constant probability by taking t = Ω(

√
p), but succeeding with probability 1

means reverting to exhaustive search.

2. Large memory: The more serious drawback is that the algorithm, as presented, requires
very large memory – of size O(t) which is potentially as large as O(

√
p). There are several

ways to combat this fact. We will see one.

3 The Baby-Step Giant-Step Algorithm

We start by presenting an algorithm that runs in time O(
√
p) and succeeds with probability 1.

Then we discuss how to generalize it to an algorithm that runs in time t <
√
p and succeeds with

probability ≈ t2/p.

2



Let h = gx. The main observation behind the baby-step giant-step algorithm is that x can be

re-written as x = i · ⌈√p⌉+ j for i, j ∈ {0, . . . , ⌈√p⌉}. So we can write gj = h ·
(
g−⌈√p⌉)i. Using this

observation, given an input h = gx, the Baby-Step Giant-Step algorithm A is defined as follows:

1. Set m = ⌈√p⌉ and v = g−m.

2. Compute gi = gi for i = 0, . . . ,m and store the results.

3. Set u0 = h.

4. For j = 0, . . . ,m:

(a) If uj = gi for some i ∈ {0, . . . ,m} then output x = i ·m+ j and terminate.

(b) Set uj+1 ← uj · v.

A time-probability tradeoff. Note that one can set m = t. Then, by the same analysis, the
algorithm is guaranteed to work whenever x ≤ t2. Hence, since x is chosen at random from Zp, the
success probability is t2/p.

On random self-reducibility. The above analysis guarantees that a t2/p-fraction of the inputs
to A are “good” in the sense that A succeeds in computing their discrete log with probability 1.
However, for the rest of the inputs A succeeds with probability 0. What if we want that A to
succeed with probability t2/p for all inputs (where the probability is over the random coins of A)?
For this, we can leverage the fact that a discrete log is randomly self-reducible. Using the above
A, we construct an algorithm B that has the strong guarantee that we want. Given input h, B

samples a random r
$← Zp and computes h′ = h · gr. It then invokes A on h′. Whenever A outputs

an exponent x′, B outputs x = x′−r. Since h′ is distributed uniformly in G (since g is a generator),
it is “good” with probability t2/p.

A persistent caveat: Large memory. Note that the above algorithm still requires that one
maintains all the gi values in memory; this means keeping Θ(

√
p) elements in memory. Next, we

will work our way to a better solution in terms of memory.

4 Pollard’s Rho Algorithm

Pollard’s Rho algorithm is based on a general technique due to Floyd for finding a cycle in a sequence
of values x0, f(x0), f(f(x0)), f(f(f(x0))), . . . for some function f . The idea will be to apply this
technique to a sequence of the form u0 = ga0 · hb0 , u1 = f(u0) = ga1 · hb1 , u2 = f(u1) = ga2 · hb2 , . . .
to find ui and uj such that ui = uj and bi ̸= bj . Then, we can compute logg(h) as before.

We start by assuming that we have a function f as above, that is: (1) random; and (2) allows us
to compute the ai and bi values for each ui. Later, we will see how to choose this f . Assume that
after ℓ steps, we hit a cycle of length c. That is, for each i ≥ ℓ it holds that ui = ui+c·k for every
positive integer k.

Let i be the first index greater than ℓ that is a multiple of c; that is i = k · c ≥ ℓ for some integer k.
Since i ≥ ℓ, it is in the cycle, so we know that ui = ui+k·c = u2i. The collision that the algorithm
will find will be ui = gai · hbi and u2i = ga2i · hb2i .

3



On input h the algorithm is defined as follows:

1. Sample a0, b0
$← Zp and set u0 ← ga0 · hb0 and v0 ← u0.

2. For i = 1, 2, . . .

(a) Set ui = gai · hbi ← f(ui−1).

(b) Set vi = f(f(vi−1)). // note that vi = u2i = ga2i · hb2i .

(c) If vi = ui and bi ̸= b2i output x = (ai − a2i)/(b2i − bi) mod p.

Since f is random, the birthday paradox says that with high probability, we should have a collision
within O(

√
p) steps. Moreover, with probability 1− 1/p, it holds that bi ̸= b2i.

How to choose f? We assumed that f is random (this was used by the birthday paradox
analysis). One tempting option is to set f = H for some cryptographic hash function H; that is
ui+1 = H(ui). If we think of this hash function as “complicated” enough, then we can hope that it
performs similarly to a random hash function. The problem is that this does not allow us to know
what ai+1 and bi+1 are, even if we know ai and bi. Another option is to let and f(ui) = gai+1,bi+1

and (ai+1, bi+1) = H(ui). This is a reasonable choice, though it asks quite a lot of the hash function:
note that we want it to “act random” on potentially ≈ √p inputs.

Another option which is often used in to partition G into m subsets S1, . . . ,Sm, for some parameter
m (in practice, m can be quite small). At the beginning of its execution, the algorithm samples s

pairs (ci, di)
$← Zp × Zp and computes δi ← gci · hdi . Then, f is defined as f(u) = u · δi, where i is

the index satisfying u ∈ Si. There are options for the choice of f which we will not cover in this
lecture.

It should be noted that there are ways to de-randomize the choice of f such that it we can prove
that it behaves almost as good as a truly uniformly-sampled f . By derandmizing the choice of f ,
we mean sampling it from a family of function which is smaller than the family of all function from
G to G. Alas, such choices of f give us functions which are either too slow to compute, or take up
too much memory.

The memory usage. Ignoring the memory needed to implement f , Pollard’s algorithm only
requires that we store ui and vi at each point in time, so we only need O(log p) bits of memory. This
is much better than the Θ(

√
p) we had before! If we choose to implement f using a cryptographic

hash function, no added memory is needed (apart from the memory for computing H, which we
can typically ignore). Using the precomputed δ values method, we need to remember additional m
values, so we need a memory of O(m · log p) bits.

5 Optimality of the t2/p tradeoff

The algorithm that we just saw is “generic” in the sense that it does not use any specific information
about the group G or the representation of group elements. In particular, it would perform just the
same in any cyclic group of order p. Interestingly, Victor Shoup proved that a success probability

4



of t2/p is the best we can hope for from a generic algorithm. We will not see the proof in this talk,
but students are encouraged to take a look at the paper (a link is on the course website).

6 Index Calculus in Integer Groups

This is an algorithm that does better than the generic ones for groups of integers. Concretely, it
runs in strictly sub-exponential time, whereas the generic algorithms that we saw run in exponential
time. If the group is of order ≈ 2λ, exponential time means 2Θ(λ) whereas subexponential time
means Θ(2λ

ϵ
) for some ϵ < 1.

We consider the group G = Z∗
q for a prime q. This is always a cyclic group of order q− 1. We start

with an informal overview of the algorithm and then present it in more detail. The Index Calculus
algorithm is parameterized by a “smoothness” bound B. Let {p1, . . . , pℓ} be the set of all primes
up to B (including B). Say that we are getting a group element h and we have to find x such that

h = gx (as before, g is the generator of the group at hand). If we sample a random e
$← Zq and

compute u = ge/h ∈ Z∗
q , it might just be that u, lifted to the integers, has all its prime factors in

B. Such an integer is called B-smooth. If this happens, we find these factors in time complexity
that depends on B (e.g., by trial division), which we will analyze later. Let us say that this is the
case, so we can write u =

∏
i p

ei
i for some e1, . . . , eℓ. Taking the discrete log mod q (with respect

to g) and rearranging, we get the equation

e = log h+ e1 log p1 + · · ·+ eℓ log pℓ mod q − 1

Unfortuentaely, we do not know {log pi}i, so we cannot compute log h from this equation. What
we can do is repeated the process m times, until we get a system of the form

e1 = log h+ e1,1 log p1 + · · ·+ e1,ℓ log pℓ mod q − 1

...

em = log h+ em,1 log p1 + · · ·+ em,ℓ log pℓ mod q − 1

For large enough m, the system will determine log h, which we can then find using linear algebra.1

Runtime anaylsis. To analyze the running time of the algorithm, we will need to rely on a
number-theoretic fact (we will not see a proof): Assume B < q (this will be the case for us).
Asymptotically, the fraction of B-smooth numbers in {1, . . . , q − 1} is ≈ 1/uu for u = log q/ logB.

Using this fact, we can turn to analyze the cost of each of the algorithm’s steps:

• Finding all primes ≤ B can be done in time Õ(B).

• Finding a single equation takes time ≈ Buu. Why? Testing whether or not an integer is
B smooth can be done in time ≈ B. We sample e’s until ge/h ∈ Z∗

q is B-smooth. By the
fact above, in expectation, we sample uu such e’s until we hit a B-smooth number. Overall,
finding one equation takes expected time ≈ Buu.

1Note that q− 1 is not a prime, so we are likely to encounter zero divisors when doing Gaussian elimination; there
are standard ways for solving this problem which we will not see.

5



• It can be shown that it is sufficient to find m ≈ B equations. So overall, finding m equations
takes time ≈ B2uu.

• Gaussian elimination takes time < B3.

Overall, the runtime can be bounded by ≈ B3 + B2uu. Now it is time to set B. For that, we will
introduce L-notation: we denote Ln[α, c] = ec(logn)

α(log logn)1−α
. So it can be shown that choosing

B = Lq[1/2, 1] = e
√
log q log log q we have that uu ⪅ B. So the total running time is

B3 = Lq[1/2, 3] = e3
√
log q log log q.

Note that this is sub-exponential in the security parameter λ ≈ log q.

Preprocessing. Note that the pis are independent of h. Therefore, one can split the computation
to two parts. In the first part, which can be done ahead of time, one finds enough equations to
compute {log pi}i. Then, in an “online phase”, when the challenge h becomes known, a single
equation is sufficient to compute log h. The overall computation still takes B3 time, but the online
computation only takes B2 = Lq(1/2, 2) time.

Best known algorithm. Improvements to the algorithm that we just described are known.

These take the runtime down to ≈ Lq[1/3, 2] = e2(log q)
1/3(log log q)2/3 .

Implications to prime order subgroups. It is generally not a good idea to work over Z∗
q ,

since a group element h = gx leaks information about its discrete log x (try to figure out what
information). Hence, when working over integer groups, we would typically take q = 2p+ 1 where
p and q are both primes (q is called a “safe prime” and q is called a Sophie Germain prime after
the French mathematician). Then, Z∗

q contains a subgroup of order p and it is better to work in
such a subgroup. The attack can be extended to work in such subgroups.

7 Conclusion

Integer groups are perhaps to most general to work over, and indeed, these were the main groups
used in the early days of public-key cryptography. However, as we saw, such groups are vulnerable
to sub-exponential discrete log computations. Let us see why this is a problem in more depth. Say
that we want ≈ 128-bits of security (this is a standard choice). This means that to solve discrete
log with constant probability, an adversary has to run in time ≈ 2128. If we work over an integer
group of order q, we have to set q to be roughly 22048 to get ≈ 120-bit security. If we insist on
> 128-bit security, we need to set q = 24096 to get yields ≈ 130-bit security! This means that
each group element requires thousands of bits to represent! Worse still, to get just 10 more bits of
security, we had to double the representation length of group elements.

In contrast, if we work in a group in which the best-known discrete log algorithms are the generic
algorithms described above, then to get 128-bit security, it is enough to use a group of order ≈ 2256.
For any additional bit of security, we need to add just 2 more bits for the representation. In the
next lecture, we will explore such groups.

6


	How hard is discrete log?
	A Random Collision-Based Algorithm
	The Baby-Step Giant-Step Algorithm
	Pollard's Rho Algorithm
	Optimality of the t2/p tradeoff
	Index Calculus in Integer Groups
	Conclusion

