
CS 355: Topics in Cryptography Spring 2023

Problem Set 4

Due: 10pm, Monday, 29 May 2023 (submit via Gradescope)

Instructions: You must typeset your solution in LaTeX using the provided template:

https://crypto.stanford.edu/cs355/23sp/homework.tex

Submission Instructions: You must submit your problem set via Gradescope. Please use course code
XV5WJ4 to sign up. Note that Gradescope requires that the solution to each problem starts on a new page.

Bugs: We make mistakes! If it looks like there might be a mistake in the statement of a problem, please ask
a clarifying question on Ed.

Problem 1: True/False [4 points].

1. For any pair of points (x1, y1), (x2, y2) ∈Z2
6, where x1 ̸= x2, there is a polynomial p of degree at most

1 such that p(x1) = y1 and p(x2) = y2. (Note: “6” is not a prime.)

2. You and your friends want to determine which one of you has the lowest salary. You design and
run a protocol, at the end of which all your friends learn that their Big 4 salariesTM are higher than
yours. This blatant invasion of your privacy could have been avoided if you had used a proper
maliciously-secure MPC protocol.

3. In Yao’s protocol for secure two-party computation of a function f (·, ·) (as described in lecture), the
two parties must exchange a number of bits that is at least as large as a Boolean circuit computing f .

4. Say that Alice, with input x ∈ {0,1}, and Bob, with input y ∈ {0,1}, use Yao’s protocol to compute
f (x, y) ∈ {0,1}, for some function f : {0,1}× {0,1} → {0,1}. Then, under reasonable computational
assumptions, the protocol must hide y from Alice—that is, Alice’s probability of guessing Bob’s bit
after running the protocol is at most 1/2+negl(λ), for security parameter λ.

Problem 2: Bit guessing in DP [4 points]. Show that if n is any positive integer, M : {0,1}n →Y is any
mechanism that is 1

10 -DP, A is any efficient adversary, and x1, . . . , xn−1 is any sequence of n −1 bits, then

Pr[A(x1, . . . , xn−1, M(x1, . . . , xn)) = xn : xn ←R {0,1}] ≤ 3

5

Problem 3: Garbled Circuits are not maliciously secure [10 points]. Suppose that Alice has bit x, Bob
has bit y , and they use Yao’s GC protocol to compute z = AND(x, y).

(a) (True/False, no explanation): If Alice’s bit is 1, and all parties follow the protocol, then afterwards
Alice can tell whether Bob’s bit is 0 or 1.

(b) (True/False, no explanation): If Alice’s bit is 0, and all parties follow the protocol, then afterwards
Alice can tell whether Bob’s bit is 0 or 1.

https://crypto.stanford.edu/cs355/23sp/homework.tex
https://www.gradescope.com/courses/509095


(c) Suppose that Alice has bit 0 and plays the role of the garbler. Show that by maliciously garbling the
circuit, and by observing the response of Bob (who is following the protocol), Alice can learn Bob’s
bit. Explicitly describe how Alice’s attack works, and informally explain why Bob cannot detect that
Alice has deviated from the protocol. In your attack, Alice must follow the whole protocol honestly,
except for the garbling step.

Problem 4: Polynomial Property Tests [10 points]. In this problem, we will derive some folklore polyno-
mial property tests. Let F be a field with ⌊log(|F|)⌋ =λ, where λ is the security parameter. Let H = 〈g 〉 ⊂ F
be a multiplicative subgroup of F of order |H | = n = poly(λ).

Definition: A Polynomial Property Test. Let L⊂ F<3n[X ] be a language (subset) of polynomials of degree
less than 3n. A polynomial property test for L, with witness count l ∈N, is a tuple of efficient randomized
algorithms (P,V ) with the following syntax:

• P ( f ∈ F<3n[X ]) → w1, . . . , wl ∈ F<3n[X ]: Given a polynomial f ∈L, outputs l polynomials w1, . . . , wl

of degree less than 3n.

• V ( f , w1, . . . , wl ∈ F<3n[X ])) → 0/1: Given a polynomial f of degree less than 3n, and l polynomi-
als w1, . . . , wl all of degree less than 3n, output accept or reject. The verifier can only query the
polynomials; that is, for g ∈ { f , w1, . . . , wl }, it can obtain g (α) for any α ∈ F in O(1) time.

A polynomial property test must be complete and sound:

• Completeness: For all f ∈L,

Pr
[
V ( f , w1, . . . , wl ) = 1 : w1, . . . , wl ← P ( f )

]= 1

• Soundness: For all f ∈ F<3n[X ] \L, for all polynomials w ′
1, . . . , w ′

l ∈ F<poly(λ)[X ],

Pr[V ( f , w ′
1, . . . , w ′

l ) = 1] ≤ negl(λ)

Your task:

(a) Construct a polynomial property test for some constant l , and L× = { f ∈ F<3n[X ] : 1 = ∏
h∈H f (h)},

where V makes a constant number of queries to polynomials. Prove completeness and soundness
for your test.

(b) Construct a polynomial property test for some constant l , and L+ = { f ∈ F<3n[X ] : 0 = ∑
h∈H f (h)},

where V makes at most 4 queries to polynomials. Prove completeness and soundness for your test.

Problem 5: Verifiable Secret Sharing [10 points]. Consider a dealer who wants to share a secret α
between n shareholders using the t-out-of-n Shamir secret-sharing scheme, for some t < n. The share-
holders suspect that the dealer secretly holds a grudge against one of them and has given that person an
invalid share, inconsistent with the rest of the shares. (We say that a set of shares is consistent if there
exists a secret α such that every coalition of at least t shareholders can recover the (same) secret α.) In
this problem, we assume that all shareholders are honest.

(a) Show that if they are willing to reveal all their shares, the shareholders can detect if one of them has
indeed been given an invalid share.



Let G be a cyclic group of prime order q > n, and let g ,h each be a generator of G.

1. The dealer chooses β, a1,b1, . . . , at−1,bt−1 ←R Zq and constructs the polynomials A(x) = α+
a1x +a2x2 +·· ·+at−1x t−1 and B(x) =β+b1x +b2x2 +·· ·+bt−1x t−1 over Zq .

2. The dealer creates t Pedersen commitments c0,c1, . . . ,ct−1 ∈ G where co = Commit(α;β) =
gαhβ and c j = Commit(a j ;b j ) = g a j hb j for j ∈ [t −1]. The dealer publicly broadcasts all the
commitments to all the shareholders.

3. The dealer creates n shares {(i , si ,ri )}n
i=1, where si = A(i ) and ri = B(i ) are computed over Zq .

The dealer privately sends each of the n shareholders her own share.

We would like the shareholders to be able to detect an invalid share without having to reconstruct the
secret in the verification process. To do this, consider the following modification to Shamir’s secret-sharing
scheme:

(b) Describe a verification routine that allows the shareholders to jointly verify that all the shares given
to them are valid without revealing any additional information about the secret.

(c) Prove that the protocol preserves the secrecy of the secret α against any coalition of fewer than t
shareholders. [Hint: Specify the view of any coalition of t −1 shareholders and then prove this view is
distributed independently of the secret α.]

(d) Extra Credit [5 points]. Prove that if a dealer can trick the shareholders into accepting an invalid set
of shares it can solve the discrete log of h with respect to g .

Problem 6: Generating Beaver Multiplication Triples [15 points]. Recall from lecture that Beaver
multiplication triples enables general multiparty computation on secret-shared data. In this problem, we
will explore two methods that can be used to generate Beaver multiplication triples. For simplicity, we
will just consider the two-party setting and we will generate Beaver multiplication triples over the binary
field Z2 (where addition corresponds to xor). To be precise, we first describe an “idealized process” for
generating a single multiplication triple. In this “idealized process”, a trusted party generates the triple
and then distributes the shares of the triple to the two parties Alice and Bob.

1. The trusted party chooses a,b ←R Z2 and computes c = ab ∈Z2.

2. The trusted party distributes a 2-out-of-2 secret sharing of a, b, and c to Alice and Bob. Specifically,
the trusted party samples ra ,rb ,rc ←R Z2 and gives ra ,rb ,rc to Alice. The trusted party then computes
sa = a ⊕ ra , sb = b ⊕ rb , and sc = c ⊕ rc , and gives sa , sb , sc to Bob.

By construction [a] = (ra , sa) is an additive secret-sharing of a, [b] = (rb , sb) is an additive secret-sharing
of b, and [c] = (rc , sc ) is an additive secret-sharing of c. Moreover, c = ab, so ([a], [b], [c]) is a valid Beaver
multiplication triple.

We will show how Alice and Bob can generate these Beaver triples without relying on a trusted party.
Throughout this problem, you may assume that Alice and Bob are “honest-but-curious” (namely, they



follow the protocol exactly as described, but may try to infer additional information from the protocol
transcript—this is the model that we considered in lecture).

(a) Show how Alice and Bob can generate a Beaver multiplication triple using Yao’s protocol.1 Your
construction should not make any modifications to the internal details of Yao’s protocol (in fact, any
secure two-party computation protocol can be used here). Then, give an informal argument why
your protocol is correct and secure. [Hint: To apply Yao’s protocol, you will need to come up with a
two-party functionality f that Alice and Bob will jointly compute. Try letting Alice’s inputs to f be
her shares (ra ,rb ,rc ), which she samples uniformly at random at the beginning of the protocol.]

(b) Show how Alice and Bob can use a single invocation of an 1-out-of-4 oblivious transfer (OT) protocol
(on 1-bit messages) to generate a Beaver multiplication triple. Give an informal argument why
your protocol is correct and secure. (In a 1-out-of-n OT, the sender has n messages m1, . . . ,mn ,
while the receiver has a single index i ∈ [n]. At the end of the protocol execution, the sender learns
nothing while the receiver learns mi (and nothing else). The formal definitions of sender and receiver
privacy are the analogs of those presented in lecture.) [Hint: Try using OT to directly evaluate the
functionality f you constructed from Part (a).]

(c) Let ℓ ∈N be a constant. Show how to build a 1-out-of-2ℓ OT protocol (on 1-bit messages) using ℓ
invocations of an 1-out-of-2 OT protocol (on λ-bit messages) together with a PRF F : {0,1}λ×{0,1}ℓ→
{0,1}. Here, {0,1}λ is the key-space of the PRF and {0,1}ℓ is the domain of the PRF. Then, give an
informal argument for why your protocol satisfies correctness, sender privacy, and receiver privacy.
[Hint: Start by having the sender sample 2ℓ independent PRF keys. The sender will use these keys to
blind each of its messages m1, . . . ,m2ℓ .]

Problem 7: Time Spent [1 point for answering]. How long did you spend on this problem set? This is for
calibration purposes, and the response you provide will not affect your score.

Optional Feedback [0 points]. Please answer the following questions to help us design future problem
sets. You do not need to answer these questions, and if you would prefer to answer anonymously, please
use this form. However, we do encourage you to provide us feedback on how to improve the course
experience.

(a) What was your favorite problem on this problem set? Why?

(b) What was your least favorite problem on this problem set? Why?

(c) Do you have any other feedback for this problem set?

(d) Do you have any other feedback on the course so far?

1You may use the variant of Yao’s protocol where only one party receives output (and the other party learns nothing).
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