Non-Interactive ZK
+ the Fiat-Shamir Heuristic
Today:

- Σ Protocols
 - Gate boolean gate constraints
- Non-interactive ZK?
 - Fiat-Shamir Heuristic
 - Schnorr Signatures
 - HVZK Σ-protocol \rightarrow NIZK (ROM)
Last Time: Σ Protocols \(p \xrightarrow{t} v \) for an NP relation \(R(x, w) \)

Properties:

- **Special Soundness**: \(\exists E. \forall \text{ pairs of accepting } (b, c, z), (b', c', z') \)
 \[w \not\in \{ x, E(b, c, z, b', c', z') \} \in R \]

(special case of **knowledge Soundness**: "knowledge error"
\[\Pr [(x, w) \in R : w \leftarrow E'(x)] > \Pr [(p, w)(x) = 1] - k \]

- **Special HVZK**: \(\exists \text{ det., eff., Sim}(x, c) \rightarrow (b, z), v_0 \)
 \[\forall (x, w) \in R. \{ (b, c, z) : c \neq c' \}; b_z - \text{Sim}(x, c) = \{ (p(x, w), v(x)) = 1 \} \]

 \[\forall x \forall c \forall z = \text{Sim}(x, c) \rightarrow (b, c, z) \text{ is accepting} \]

 (the last lecture accidentally omitted this from the SHVZK def. However, this property is needed to show that to OR Π \(\Pi \) is complete. Also, Schnorr's protocol does have this property.

- Why is Proof-of-knowledge defined this way? Let's see...

 - A more natural idea for Pok: "\(w \) can be efficiently computed from \(P^* \)'s state"
 \[\rightarrow \exists E \forall P^* (x, E(x, \text{state}_P)) \in R \]

 (note: our real Pok def is probabilistic. Here, we omit the probabilities for brevity...)

 - Problem: since \(! \) is unbounded, \(! \) may be unbounded
 \[\rightarrow \text{ so, } E \text{ could not be efficient} \]

 - Idea: each msg from \(P^* \) has \(\text{poly}(\lambda) \) size (and msgs are \(\text{fn}(\text{state}_P) \))
 \[\rightarrow \exists E \forall P^* (x, E(x, \text{all msgs } P \text{ could send}) \in R \]

 - Problem: msgs are a tree. If first \(v \) msg has size \(\lambda \), tree size \(\geq 2^{\lambda m_{P \rightarrow V}} \)
 \[\rightarrow \text{ again, } E \text{ could not be efficient...} \]

 - Idea: allow \(E \) to **explore** the message tree
 \[\rightarrow \text{ This is exactly what 'rewinding' does} \]

 - Idea: allow \(E \) to explore the message tree
 \[\rightarrow \exists E \forall P^* (x, E^*(x)) \in R \]

\(\Rightarrow \) Rewrite this probabilistically to get Pok def

\(\Rightarrow \) a notation for exploring the message tree
Towards a Σ protocol for circuit SAT

Recall: Pedersen commitments $g, h \in G$

$\text{Commit}(m \in \mathbb{Z}_p, r \in \mathbb{Z}_p) = g^m h^r$

$m_0 \leftarrow \bigwedge m_i$
$m_i \leftarrow \bigvee m_i$
$c_i = \text{Commit}(m_i, r_i)$

$\begin{array}{c|c|c|c}
 m_0 & m_1 & m_2 \\
 0 & 0 & 0 \\
 0 & 1 & 0 \\
 1 & 0 & 1 \\
 1 & 1 & 1 \\
\end{array}$

$m_0 = 0 \text{ AND } m_1 = 0 \text{ AND } m_2 = 0$
$m_0 = 0 \text{ AND } m_1 = 1 \text{ AND } m_2 = 0$
$m_0 = 1 \text{ AND } m_1 = 0 \text{ AND } m_2 = 0$
$m_0 = 1 \text{ AND } m_1 = 1 \text{ AND } m_2 = 1$

Q: How to show $m_i = 0$ or $m_i = 1$? (public: g, h, c_i)

Recall: Schnorr's Protocol

A: Pok for $\{ (x = (g, h) \in G^2, w \in \mathbb{Z}_p): g^w = h^2 \}$

$P(g, h, w)$

$r \in \mathbb{Z}_p$

$g^r \rightarrow c \leftarrow c^d \cdot c$

$z \leftarrow \text{w}$

$g^z \rightarrow h^z \cdot g^r$

$V(g, h)$

A: To show $m = 0$, show $c = g^m h^r$

\Rightarrow use schnorr to show

$\downarrow w$

\Rightarrow works for any gate truth table.

\Rightarrow HW: Circuit SAT.
NI2Ks

"Non-Interactive Zero-Knowledge (Proofs)"

Q: Suppose we have a \(\Pi \) sound, \(\mathcal{ZK} \) NI pf

\[\exists \text{Sim}(x) \rightarrow \Pi' \]

Verify (an eff. alg.) can't tell

\[x \in L \iff \exists \Pi \quad \text{Verify}(x, \Pi) \Rightarrow \text{Verify}(x, \text{Sim}(x)) \]

sound complete \(\mathcal{ZK} \) \(\text{a PPT alg for } x \in L \)

"bound-error probabilistic poly time"

So, in the standard model, if

\(L \) has a NI2K, then \(\mathcal{LEBPP} \)

\(\Rightarrow \) So, \(\mathcal{ZK} \) doesn't mean much....

But NI2Ks are possible if we change the model!

\[\text{RO} \]

\[\text{CRS} \]

\[P \overset{\Pi}{\rightarrow} \mathcal{V} \]

\[P \overset{\Pi}{\rightarrow} \mathcal{V} \]
NT, ZK, Poh in ROM

Fiat-Shamir Heuristic: replace V w/ H.
Schnorr: $h = g^w$

$P(g,h,w)$
$\begin{array}{c}
 r \in \mathbb{Z}_p \\
 z \in \text{cwtr}
\end{array}$
$\begin{array}{c}
 c = H(gh, gr) \\
 z \rightarrow g^z h^c gr
\end{array}$

$V(g,h)$

Analysis: Completeness is direct

ZK:
Q: What does ZK mean in ROM

A: Simulate $P \leftrightarrow V$ transcript & RO queries called "programming" the RO

Sim:
map $M : G^3 \rightarrow \mathbb{Z}_p$

$c \in \mathbb{Z}_p$
$u, z \leftarrow \text{Sim}_{\text{Schnorr}} (g, h, c)$
set $M[(g, h, u)] \leftarrow c$
output (u, c, z)
on RO query x: if $x \notin M$, output $M[x]$
Pok
Q: What does Pok mean in ROM?

Standard
\[
P \xrightarrow{\text{mi}} V \xrightarrow{\text{ri}}
\]

A: rewind, choosing \(V\) messages and \(H\) outputs

Schnorr-FS:
\[
E: \quad c \neq c' \text{ if } C
\]
run \(P^*\): when it queries for challenge, give \(c\)
and two transcripts \(s, E_{\text{schnorr}}\) to get witness

Bonus: Signatures
Simply add \(m\) to the hash
\[
H: G^3 \times M \rightarrow \mathbb{Z}_p
\]
\[
P \text{Sign}(\text{pk, sk, } m, g) := r \in \mathbb{Z}_p
\]
\(c = H(pk, g, g^r, m) \)
\(z = sk \cdot c + r \)
\(\sigma = (z, g^z) \)

Verify \((pk, m, \sigma) \):
\(c = H(pk, g, g^n, m) \)
\(g^z = pk^{c_2} \cdot g^r \)

Notes:
- send \(c \), not \(g^r \), compute \(g^r = g^{\frac{c}{pk}} \)
 check \(c = H(\cdot, \cdot) \)

\(\sigma \in \mathbb{Z}_p^* \)
\(\text{since soundness is } \frac{1}{101}, \text{take } c \text{ to be } 128 \text{ bits} \)
\(\text{total size is } 384 \text{ bits} \)

Compare:
RSA-FDH: \(\approx 3072 \text{ bits} \)
BLS: 384 bit (pairing group size)
A general perspective:

Fiat Shamir lifts a Σ^1-protocol with completeness + SHVZK to sks to a non-interactive ZK-PAK (in the ROM). It's also useful for other constant-round protocols (public-coin) and some $O(1)$-round protocols too!