Last Time
Using the PCP Thm and Merkle Commitments, we constructed a SNARG for NP.

Issue: Wildly Impractical!
No one has implemented it in fact.

Today
We will start to give a construction for a ZK-SNARK for Arithmetic Circuit SAT that is practical!
Arithmetic Circuit SAT := ∃ \((C, x) , w \) : \(C(x, w) = 1 \)

Using a definition of succinctness from last lecture:

Communication

\[O(1 |C(x)|) + o(|w| + T) \]

Verifier Runtime

\[\text{Runtime of NP Verifier} \]

\[\text{just ends up being proportional to } |C| \]

Because the verifier \(V(X) \) has to read in the instance \(X := (C, x) \), which is proportional to the runtime \(T \), this notion of succinctness doesn't capture what we would naturally consider succinct; i.e. \(O(|X|) + o(|w| + |C|) \).

Solution!

What if we split the verifier into two stages:

\[V = (V_{off}, V_{on}) \] where

Offline Stage: \(V_{off}(C) \xrightarrow{\dagger} ppv \) where \(|ppv| < |C| \) and \(V_{off} \) can run in time \(\tilde{O}(|C|) \)

Online Stage: \(V_{on}(ppv, x) \) interacts with \(P((C, x), w) \).

\(|ppv, x| < |C, x| |
More formally, define an index relation as pairs
\[R := \{ (i, x, w) \mid (i, x) \in X \times W \} \]
where
\[X := I \times X. \] I is called the index space, \(X \) is the instance space and \(W \) is the witness space.

Coming back to our example: \(I \) would be the space of circuits, \(X \) the space of public inputs, \(W \) the set of private inputs.

A preprocessing ZK-SNARK for an index relation \(R \) is a tuple of \(\text{eff, interactive alg.s} \) \((P, V := (V_{\text{off}}, V_{\text{on}}))\) with

Completeness: \(\forall (i, x) \in L(R), \)
\[\Pr\left[\langle P((i, x), w), V_{\text{on}}(pp_v, x) \rangle = 1 \mid pp_v \xleftarrow{\$} V_{\text{off}}(i) \right] \geq 1 - \text{neg}(\lambda) \]

Soundness: \(\forall (i, x) \notin L(R), \forall \text{PPT} P^* , \)
\[\Pr\left[\langle P^*, V_{\text{on}}(pp_v, x) \rangle = 1 \mid pp_v \xleftarrow{\$} V_{\text{off}}(i) \right] \leq \text{neg}(\lambda) \]

\(\exists \text{eff Sim s.t. } \forall (i, x) \in L(R), \)
\[\exists \text{Sim}((i, x)) \exists \exists \langle P((i, x), w), V_{\text{on}}(pp_v, x) \rangle \mid pp_v \xleftarrow{\$} V_{\text{off}}(i) \]

Additionally, succinctness, public coin, knowledge soundness

Very hairy to define precisely so I will omit this in lecture.
How are ZK-SNARKs constructed in practice?

Intuition:
Today, we will focus on the index relation for Circuit SAT.

\[C \rightarrow \tilde{C} \in F[x] \quad , \quad \text{com} \leftarrow \text{Commit}(\tilde{C}) \]

Instead of the verifier reading in the full description of the circuit \(C \) during the online phase, we can cleverly encode the circuit \(C \) as some polynomial \(\tilde{C} \in F[x] \).
Then, the verifier can commit to this polynomial in an offline (preprocessing) stage.

During the online phase, whenever the verifier \(V_{on}(\text{com}, x) \) wants to query the encoding, it asks the Prover for help. The prover will respond with an evaluation \(y \) and an evaluation proof \(\Pi \).

\[P \quad \text{What's } \tilde{C}(z) ? \quad \text{V}(\text{com}, x) \]

\[\leftarrow \quad Y, \quad \Pi_z \quad \rightarrow \quad \text{Verify}(\text{com}, z, y, \Pi_z) \]
Additionally, the prover can encode their witness w as a polynomial \bar{w} and send a commitment to it. Then, the verifier can query both \bar{w} and \bar{c} to test for various properties of these polynomials.

Recipe

A statistically sound proof system where in prover is unbounded in some idealized oracle model.

A computationally sound commit scheme to oracles.

Today, we will focus on the statistically sound portion of the construction. In particular, we will construct a PIOP for Circuit-SAT.
A Polynomial Interactive Oracle Proof (PIOP) system for an Index Relation R over a field F is a tuple of eff interactive algs $(P, V := (\text{Voff}, \text{Von}))$ where the Prover's messages are restricted to black box polynomials $\in F[x]$, which the verifier can query as oracles.

Offline Stage: $\tilde{\text{ppv}} \leftarrow \text{Voff}(i)$ outputs a set of blackbox polynomials.

Online Stage:

\[
P((i, x), w) \quad \text{Von}(\tilde{\text{ppv}}, x)
\]

For round i, generate a set of black box polys \tilde{m}_i,

\[
\begin{array}{c}
g \leftarrow r_i \quad \text{Sample Randomness} \\
\tilde{m}_i \leftarrow \text{Query}(\tilde{\text{ppv}}, x, r_i, x)
\end{array}
\]

After Interaction: Verifier queries polynomials $\tilde{\text{ppv}}$ and \tilde{m}_i based on r_i randomness sent.

\[
evals \leftarrow \text{Query}(\tilde{\text{ppv}}, \tilde{m}_i, r_i, x)
\]

Then, verifier outputs 0/1 from this info.

\[
0/1 \leftarrow \text{Decide}(\text{evals}, r_i, x)
\]

This idealized protocol can be compiled to the standard model by sending polynomial commitments as eval proofs.
Notions of completeness/soundness mirror that of Preprocessing SNARKs:

Completeness: \(\forall (i,x) \in L(R), \)
\[
\Pr \left[\langle P((i,x), w), v_{on}(\widetilde{p}, x) \rangle = 1 \mid \widetilde{p} \in V_{off}(i) \right] \geq 1 - \text{neg}(\lambda)
\]

Soundness: \(\forall (i,x) \notin L(R), \forall P^* \) that send message polys whose \(\deg \leq \text{poly}(\lambda), \)
\[
\Pr \left[\langle P^*, v_{on}(\widetilde{p}, x) \rangle = 1 \mid \widetilde{p} \in V_{off}(i) \right] \leq \text{neg}(\lambda)
\]

Preliminaries

Define \(\mathbb{F} \) to be a field of order \(p \) such that
- \(|p| \approx 2^\lambda \)
- \(3 \cdot 2^\lambda \mid p-1 \) for \(\lambda \in \mathbb{N} \), \(2^\lambda \approx \text{poly}(\lambda) \)

Since \(\mathbb{F}^* \) is cyclic, \(\exists \) a multiplicative subgroup \(H \subseteq \mathbb{F}^* \) whose order is \(n = 3 \cdot 2^\lambda \). Furthermore, \(\exists \) a generator \(g \in \mathbb{F}^* \) s.t.
\[
H = \{ g^0, g^1, g^2, \ldots, g^{n-1} \}
\]

We will refer to \(H \) as our \(\text{evaluation domain} \).

Vanishing Poly: \(H \) is the exact set of roots of \(X^{n-1} \in \mathbb{F}[X] \).

Fact: \((X^{n-1}) \mid f(X) \iff f(X) \) vanishes on \(H \)
Consider a polynomial \(f = \sum_{i=0}^{n-1} f_i x^i \in \mathbb{F}[x] \) whose degree < n.

The Fast Fourier Transform is an alg running in \(O(n \log n) \) time that computes the evals of \(f \) over \(\mathbb{F} \) given coeffs \(f_i \):

\[
\text{FFT}(f) \rightarrow (f(1), f(2), \ldots, f(2^n - 1))
\]

Similarly, the inverse FFT interpolates coeffs of \(f \) from evals over \(\mathbb{F} \) in \(O(n \log n) \) time.

\[
\text{FFT}^{-1}((f(1), f(2), \ldots, f(2^n - 1)) \rightarrow f
\]

Fibonacci Example

Fibonacci Sequence

\(t_0 = 0 \), \(t_1 = 1 \), \(\forall j \geq 2 \), \(t_j := t_{j-2} + t_{j-1} \)

Index	0	1	2	3	4	5	6	...
term	0	1	1	2	3	5	8	...

\(R_{fib} := \exists ((j, t_j), (t_0, t_1, \ldots, t_{j-1})) : (t_0, \ldots, t_j) \) are \(j \) terms of fibonacci

We will describe a PIOP for this trivial relation where the verifier does a constant number of queries and a small number of arithmetic operations.
Intuition
Prover could commit to its witness as a poly \(f \in F^n[x] \) such that \(\forall i \leq j, \ f(g^i) = t_i \) (assume \(j = n-1 \) for simplicity)

\[
\begin{array}{c|cccccccc}
\forall i \leq j : & t_0 & t_1 & t_2 & \ldots & \ldots & t_j \\
\forall h \in H : & f(g^0) & f(g^1) & f(g^2) & \ldots & \ldots & f(g^m) \\
\end{array}
\]

I.E., we encode the witness as evaluations over \(H \).

Then, the prover could send \(f \) to the verifier. The verifier could query \(f(g^{n-1}) \) to get the \(j \)-th value....

But how can the verifier be sure that \(f(x) \) actually encodes the correct values of the fibonacci sequence???

Polynomial Property Testing!

We want to test whether \(f \) encodes the Fib seq.

A first check: the verifier can query \(f(g^0)=0, f(g^1)=1 \).

Then, we would like to check: \(\forall h \in H \setminus \{g^0, g^1\}, \ f(g^{-2}h) + f(g^{-1}h) = f(h) \)

Rearranging,
\[
f(g^{-2}h) + f(g^{-1}h) - f(h) = 0
\]
Another way of viewing that, we want the polynomial
\[f(g^{-2}X) + f(g^{-1}X) - f(X) \]
to vanish on \(H \setminus \{g^{0}, g^{1}\} \).

\[\iff \quad F(X) := (f(g^{-2}X) + f(g^{-1}X) - f(X))(X - g^{0})(X - g^{1}) \]
vanishes on \(H \).

Using our earlier fact that
\[x^{n-1} \mid F(X) \iff F(X) \text{ vanishes on } H \]

The prover can derive a quotient poly \(q(x) := F(x)/(x^{n-1}) \) and send this to the verifier.

Notice if \(F(X) \neq (x^{n-1})q(x) \), then \(F(X) - (x^{n-1})q(x) \neq 0 \).

Thus, the verifier can check
\[F(X) \div (x^{n-1})q(x) \]

By querying \(q \) and \(f \) at a random point \(\alpha \in \mathbb{F} \).

\[F(\alpha) \div (x^{n-1})q(\alpha) \]

\[(f(g^{-2}\alpha) + f(g^{-1}\alpha) - f(\alpha))(\alpha - g^{0})(\alpha - g^{1}) \div (x^{n-1})q(\alpha) \]
\[\begin{align*}
\neg \quad \text{Interpolate } f & \leftarrow \text{FFT}^{-1}(f(g^i) = t; \forall i \leq j) \\
\neg \quad \text{Define } F(X) & := (f(g^2x) + f(g^i x) - f(x))(x - g^0)(x - g^1) \\
\neg \quad \text{compute quotient poly } q(x) & := F(X)/(x^{n-1}) \in \mathbb{F}[x] \\
\neg \quad \text{Send } f, q \text{ to verifier} \\
\end{align*}\]

\[V(j, t_i) \]

- Query \(f \) at \(g^0, g^1, g^j \) to check \(f(g^0) = 0, f(g^1) = 1, f(g^j) = t_j \)
- Sample \(\alpha \in \mathbb{F} \), query \(f \) at \(g^2 \alpha, g^i \alpha, \alpha \) to compute \(F(\alpha) = (f(g^2 \alpha) + f(g^i \alpha) - f(\alpha))(\alpha - g^0)(\alpha - g^1) \)
- Query \(q \) at \(\alpha \) to check \((\alpha^{n-1})q(\alpha) = F(\alpha) \)
- Output accept if all checks pass

Completeness

\(x^{n-1} \mid F(X) \) iff \(H \) is a set of roots of \(F \).

We constructed \(F(X) \) and \(f \) such that \(\forall h \in H \setminus \{g^0, g^1\}, f(g^2h) + f(g^i h) - f(h) = 0 \)

For \(h \in \{g^0, g^1\}, (x - g^0)(x - g^1) = 0 \)

Thus, \(F \) vanishes on \(H \).
Soundness:
Say a malicious prover P^* claims that $t_j = c$ (where c is not the jth fib)
They send polys $f, g \in \mathbb{F}[X]$ such that $\deg(f), \deg(g) \leq \text{poly}(\lambda)$.

Let us denote the event E_0 as the event where

$$ f(g^0) = 0, \ f(g^1) = 1, \ f(g^j) = c $$

and denote E_1 as the event where $(x^{n-1})q(x) = F(x)$.

$$ \Pr[V\text{accepts}] = \Pr[V\text{accept}\mid E_0] \Pr[E_0] + \Pr[V\text{accept}\mid \neg E_0] \Pr[\neg E_0] $$

$$ \leq \Pr[V\text{accept}\mid E_0] + 0 $$

$$ = \Pr[V\text{accept}\mid E_0 \land E_1] \Pr[E_1\mid E_0] + \Pr[V\text{accept}\mid E_0 \land \neg E_1] \Pr[\neg E_1\mid E_0] $$

$$ \leq \Pr[E_1\mid E_0] + \Pr[V\text{accept}\mid E_0 \land \neg E_1] $$

$\Pr[V\text{accept}\mid E_0 \land \neg E_1]$:

If $(x^{n-1})q(x) \neq F(x)$, then $(x^{n-1})q(x) - F(x) \neq 0$. Thus,

$$ \Pr[(x^{n-1})q(x) - F(x) = 0 \mid x \in \mathbb{F}] \leq \frac{\deg(Q)}{|\mathbb{F}|} = \frac{\text{poly}(\lambda)}{|\mathbb{F}|} \leq \text{neg}(\lambda) $$

Q can have at most $\deg(Q)$ roots over \mathbb{F}.

Thus, $\Pr[V\text{accept}\mid E_0 \land \neg E_1] \leq \text{neg}(\lambda)$.

$\Pr[E_1\mid E_0]$:

We will argue $E_0 \land E_1$ cannot occur $\Rightarrow \Pr[E_1\mid E_0] = 0$.
Lemma: If $\exists f, q \in \mathbb{F}[x], s.t. (x^n-1)q(x) = F(x)$ and $f(g^0) = 0, f(g^1) = 1, f(g^j) = c$ then $t_j = c$.

$(x^n - 1)q(x) = F(x) \iff F$ vanishes on H

$\iff \forall h \in H, (f(g^0) + f(g^1) - f(h))(x-g^0)(x-g^1) = 0$

\[
\begin{align*}
 f(g^0) &= 0, f(g^1) = 1, f(g^j) = c \\
 \downarrow \\
 \text{By induction on indices, } t_j = c.
\end{align*}
\]

By contrapositive of lemma, $\not\exists f, g$ s.t. $E_0 \land E_1$ occurs. Thus, $\Pr[E_1 | E_0] = 0$.

Therefore $\Pr[\text{Vac}] \leq 0 + \neg\neg\neg c(\lambda) \leq \neg\neg c(\lambda)$.

Plonk (GWC19)

- SNARK for Circuit-SAT
- Clever encoding of ACs
Consider the following Arithmetic circuit C, run on an instance $x := (x_0, x_1) \in \mathbb{F}^2$ and witness $w := (w_0, w_1) \in \mathbb{F}^2$.

![Arithmetic Circuit Diagram]

where V_0, \ldots, V_8 are the wire values. We call the vector $W := (V_0, V_1, \ldots, V_8)$ the extended witness.

For W to be a valid assignment of the wires, the following must hold:

1) Gates Checks:
 - $V_0 \leftarrow V_1 \leftarrow V_2 \leftarrow V_3 \leftarrow V_4 \leftarrow V_5 \leftarrow V_6 \leftarrow V_7 \leftarrow V_8$
 - $+ = \rightarrow$
 - $+ = \rightarrow$
 - $x = \rightarrow$

2) Copy Checks
 - $V_0 \leftarrow V_1 \leftarrow V_2 \leftarrow V_3 \leftarrow V_4 \leftarrow V_5 \leftarrow V_6 \leftarrow V_7 \leftarrow V_8$
 - $= \$

We can define two vectors based on C:

- Gate selector: \((S_0 := 0, S_1 := 0, S_2 := 1)\) where
 \(S_i := 0\) if Gate \(i\) is an addition gate and \(1\) o/w

- Permutation Vector: \((0, 1, 6, 3, 4, 7, 2, 5, 8)\)

\[\Pi \uparrow \]
\[(0, 1, 2, 3, 4, 5, 6, 7, 8) \]

that encodes a perm \(\Pi\).

Notice checks 1) and 2) are equivalent to checking

1) \(\forall i \leq 3, j := 3i \)
\[(1 - S_i)(V_j + V_{j+1}) + S_i (V_i \cdot V_{j+1}) = V_{j+2}\]

2) \(\forall j \leq 9, V_j = V_{\Pi(j)}\)

We will translate these checks into statements about polys!

To encode circuit \(C\) as a polynomial, interpolate a poly \(S\) and \(\Pi\) (assuming \(|H| = 9, |H'| \leq H, H' = \ell g^0, g^3, g^6\))

\[
\begin{array}{c|ccc}
S & g^0 & g^3 & g^6 \\
----&---&---&--- \\
0 & 0 & 0 & 1 \\
\end{array}
\quad
\begin{array}{c|cccccccc}
\Pi & g^0 & g^1 & g^2 & g^3 & g^4 & g^5 & g^6 & g^7 & g^8 & g^9 \\
----&---&---&---&---&---&---&---&---&---&--- \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{array}
\]

These polynomials will be outputted by Voss in preprocessing. The prover can interpolate a poly \(W\) s.t.

\[
\begin{array}{c|cccccccc}
W & g^0 & g^1 & g^2 & g^3 & g^4 & g^5 & g^6 & g^7 & g^8 & g^9 \\
----&---&---&---&---&---&---&---&---&---&--- \\
V_0 & V_1 & \ldots & V_9 \\
\end{array}
\]

* normally we would pad \(\Pi\) s.t. \(|H'| = 2^e\) for some \(e\) but lets ignore that.
The prover sends W to the online verifier V_{on} who has oracle access to $S(X)$ and $T\mid(X)$.

To check perform the gate check, the verifier would like to check

\[\forall h \in H', (1 - S(h)) (W(h) + W(gh)) + S(h) (W(h) W(gh)) = W(g^2 h). \]

This is equivalent to checking if the polynomial

\[(1 - S(X)) (W(X) + W(g^{-1} X)) + S(X) (W(X) W(gX)) - W(g^2 X) \]

vanishes on H'.

To check the copy constraints is more complicated:

Required efficiently testing that:

\[\forall h \in H, \quad W(h) = W(T\mid(h)). \]

Using our old strategy to test if

\[W(X) = W(T\mid(X)) \]

vanishes on H would require the prover compute a quotient $q(X)$ whose $\deg \geq n^2$ (quadratic).

Turns out with clever randomized tests, it's possible to check this condition without a quadratic blow-up.