Two-Party Computation (2PC) from Garbled Circuits and Oblivious Transfer
Multi-Party Computation (MPC)
- also Secure Computation (SC)
- today: 2PC
 - Alice knows \(x \in \{0,1\}^k \)
 - Bob knows \(y \in \{0,1\}^k \)
 - both know \(f(x,y) = (0,1)^k \)
 - the "functionality"
- goal: both learn \(f(x,y) \), and nothing else
- Note: can also support Alice learning \(f_A(x,y) \) and Bob learning \(f_B(x,y) \) - not covered today.

Applications of 2PC
1. Yao's millionaire problem: Alice has \(x \) dollars, Bob has \(y \).
 \(f(x,y) \) output 1 if \(x \geq y \), otherwise 0.
 (Alice & Bob have... problems...)

2. Private Advertising Campaign Evaluation:
 - Google knows who saw what ad:
 - Macy's knows who bought stuff
 - Activity: Neil
 - Bill
 - Wilson
 - Output:
 - Select Count (*)
 - From Google Join Macy's
 - Where ad = "Blender"

3. Private Contact Discovery: Signal knows its users' phone #s
 - I know my contacts list
 - I want to learn the intersection; signal should learn nothing
 - "Private Set Intersection" (PSI)

4. Zero Knowledge (sort of)
 - Prover knows \((x,w) \)
 - Verifier knows \(x \)
 - Verifier learns \((x,w) \in R \)

Definition & Security
Let \((A,B)\) be an interactive protocol for functionality \(f: \{0,1\}^k \times \{0,1\}^k \to \{0,1\}^k \). Note: \(A,B\) are randomized, interactive algorithms.

It is correct if for all \(x,y \in \{0,1\}^k \):
\[
\Pr[A(x),B(y) = f(x,y)] = 1
\]

Two popular security types:
- Semi-honest: Adversarial parties follow the protocol but inspect their data to try to learn more (~ HVEK) (aka honest-but-curious)
- Malicious: Adversarial parties may deviate from the protocol (~ EIK)

Today: Semi-honest, until the very end

Semi-honest security: Privacy
- 3 two efficient simulators \(S_a, S_b \) s.t. \(\forall x,y \in \{0,1\}^k \)
 \[
 \begin{align*}
 &\Pr[S_a(x,f(x,y)) \in \{\text{view}([A,w],[B,y])\}] \\
 &\Pr[S_b(y,f(x,y)) \in \{\text{view}([A,w],[B,y])\}]
 \end{align*}
 \]

Example MPC: Oblivious Transfer (OT) (Construction by Bellare & Micali)
- Sender knows \(m_0,m_1 \in \{0,1\}^k \) → learn nothing
- Receiver knows \(m \) → learn \(m_0 \)

Question: if Sender sends \(m_0 \) \& \(m_1 \), is that a secure 2PC for the OT functionality? No! Receiver's simulator can't simulate \(m_1 \)
Instantiating the security definitions

Protocol \((S,R) \) is secure if:

- Correctness: \(\Pr[\text{output}\{\text{Sim}(m,m,e\{0,1\}^e)\}\neq m] = 1 \)
- Sender privacy: \(\exists \text{ all} \ Sim \ s.t. \ \forall m,m.e\{0,1\}^e \ \forall b \neq (0,1) \)
 \[\text{Sim}(b,m) \equiv \text{View}(\{\text{Sim}(m,m,e\{0,1\}),b\}) \]
- Receiver privacy: \(\exists \text{ all} \ Sim \ s.t. \ \forall m,m.e\{0,1\}^e \ \forall b \neq (0,1) \)
 \[\text{Sim}_m(m,m) \equiv \text{View}(\{\text{Sim}(m,m,e\{0,1\}),b\}) \]

Bellare & Micali OT

Based on El-Gamal encryption variant:

- \(S(m_0,m_1,e\{0,1\}^e) \)
- \(\text{Pr}[\text{output}\{\text{Sim}(m_0,m_1,e\{0,1\}^e)\}\neq m_0] = 1 \)
- Sender privacy:
 \[\forall m_0,m_1.e\{0,1\}^e \ \forall b \neq (0,1) \]
 \[\text{Sim}(b,m) \equiv \text{View}(\{\text{Sim}(m_0,m_1,e\{0,1\}),b\}) \]
- Receiver privacy:
 \[\forall m_0,m_1.e\{0,1\}^e \ \forall b \neq (0,1) \]
 \[\text{Sim}_m(m_0,m_1) \equiv \text{View}(\{\text{Sim}(m_0,m_1,e\{0,1\}),b\}) \]

Analysis

Correctness: \(\text{Sim}(m_0,m_1) = \text{h}_1 \cdot \text{h}_2 \), output \((b, c/m) \) (generate rest of transcript per the protocol)

Sender Privacy:
- First, show that the EG variant is semantically secure/CPA secure (equiv. for PKE)
 - CDH implies guess \(\text{pr}_{\text{E}} \) is hard to guess. RO implies \(\text{h}(\text{pr}_{\text{E}}) \) is hard to guess
 \[\text{Sim}(b,m) : \]
 \[k \in \mathbb{Z}_k \]
 \[c \in \mathbb{G}_1 \]
 \[\text{Y} = \text{g}^k \]
 \[\text{C} = \text{h}(\text{pr}_{\text{E}}) \]
- Output \((C, K, K_0, K_1) \)
- Next, show \(\neq \) real view (compare)
 \[(C, K, \text{Enc}(\text{g}^k, m_0, m_1), \text{Enc}(\text{g}^k, m_0, m_1)) \]
- If some \(A \) can distinguish, can attack CPA security of \(\text{E} \).

Yao's Garbled Circuits (2PC)

- 2PC for any boolean circuit \(f \)
 - Directed acyclic graph
 - 2-input AND, XOR gates with unlimited fan-out
 - input wire for each bit of input
 - output wire for each bit of output
 - Garbling, high-level idea: (see OT + Sym. Ciph.)
 1. Alice sends a "garbled" circuit to Bob
 2. Bob uses OT to get information to evaluate the circuit on the correct inputs only.
 3. Alice "degarbles" the output

Warm-Up: Garbling a single AND-gate

- Let \((E,D) \) be a symmetric cipher with key space \(\mathbb{K} \)
 - Note: we'll end up requiring some unusual (but not unrealistic) properties of \((E,D) \)

 \[f(x,0) = 0 \]

 \[f(x,1) = x \]

- Garbler (Alice):
 1. Sample two keys for each input wire \(K_{x,0}, K_{x,1}, K_{y,0}, K_{y,1} \in \mathbb{K} \)
 2. Output wire too \(K_{x,0}, K_{x,1}, K_{y,0}, K_{y,1} \in \mathbb{K} \)

- Note: ignore the red stuff till later.
2. Garble each gate:

\[
\begin{align*}
\text{Garbling } C &\text{ is } \{ E(k_{x},E(k_{y},0)), E(k_{x}, E(k_{y},1)) \}_{a_{x},b_{x},a_{y},b_{y}} \text{ in a randomized order.}
\end{align*}
\]

3. Sends the garbling and k_{x} where R is the value of i, to Receiver.

4. Evaluators use $m_{x} \leftarrow D(k_{x}, D(k_{x}, C))$ for $x \in C$.

5. Of the m_{x}'s will be 1 a decryption error since we used the wrong key.

6. He non-1 m_{x} will be $\overline{\text{AND}}(x, y)$.

7. Receiver sends \overline{z} to garbler.

Yao's actual protocol (full circuit):

The previous protocol has flow inputs as "garbled" or keys, but the gate outputs are in the clear - limits composition.

Let's make a few changes... See red above.

Now, the multi-gate protocol is:

1. Garbler:
 a. Samples $k_{x_{0}}, k_{x_{1}}, \ldots, k_{x_{r}}$, for each wire x_{i}.
 b. Receive $m_{i} \leftarrow E(k_{x_{i}}, E(k_{y_{i}}, 0))$ for each gate $y_{i} \in C$.
 c. Sends c_{i} for all gate y_{i} and $k_{x_{i}}$ for wire x_{i} corresponding to input x_{i} of value x_{i}.

2. Evaluators use OTs to obtain $k_{x_{i}}, y_{i}$ for wire y_{i} corresponding to input y_{i} of value y_{i}.

3. Evaluators evaluate gate-by-gate:

4. Evaluators sends outputs keys to garbler, who replies with output bits.

Visualizing the multi-gate protocol:

- Note: Not maliciously secure. (see this problem)

- Optimizations go: one aim of research
 - Avoid trial decryption
 - "half-gates": two c's per gate, instead of 4.
- "OT extension": a mechanism for doing $O(n)$ OTs with $O(1)$ group operations (instead of $O(n)$)
 - Important if there are many inputs
- "free XOR"
 - At protocol start, sample $R \leftarrow M$ (mix).
 - For all x_{w}, sample $k_{x_{w}} \in M$, set $k_{x_{w}} \leftarrow k_{x_{w}} \oplus R$
 - Note: For $x_{w} \leftarrow y_{w}$, fix $k_{x_{w}} = k_{x_{w}} \oplus k_{y_{w}}$
 - then $k_{x_{w}} \oplus k_{y_{w}} = k_{x_{w}} \oplus (k_{y_{w}} \oplus k_{y_{w}}) = k_{y_{w}}$
 - $k_{y_{w}} \oplus k_{y_{w}} = k_{y_{w}} \oplus k_{y_{w}} = k_{y_{w}}$
 - Thus, no additional $k_{x_{w}}$ @ gate! No garbling needed!

- "Free If": Given $\text{MUX}_{x_{w}}$ in circuit \oplus, and trial time roughly proportional to the longest path (not sum).
Malicious Security

Problem: A might not follow the protocol
- sample biased randomness
- send wrong messages
- attempt to A their input mid-protocol
- refuse to send some messages
- can be devastating: GC is totally insecure against a malicious adversary (HW problem)

- How to obtain malicious security?
 - Beautiful idea: [GMW’87]
 1) Commit to inputs/randomness
 2) For each m from P, P proves in zero knowledge that m is the correct message

- Somewhat inefficient

- More efficient approaches exist (perhaps next lecture).